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ABSTRACT

The results of a program to study the analysis and design of composite

materials and structures is reported. Emphasis was placed upon three

major areas: The definition of design criteria for laminates including

studies of basic failure mechanisms; the definition of unique design concepts

to enhance the beneficial characteristics of composite materials and to utilize

them in structures; and the analysis of composite materials property test

techniques.



FOREWORD

This document is the annual report on the program entitled "Study of

the Relationship of Properties of Composite Materials to Properties of

Their Constituents" The program was performed for the National Aero-

nautics and Space Administration under Contract NASw-1377 and was

monltored by Dr. R. W. Leonard of the NASA Structures Research Divi-

sion.
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INTRODUCTION

Development of methods of analysis of the strength and stiffness of fib-

rous composites has advanced to the point where it is feasible to establish

rational initial design procedures for composite structures. These procedures

are naturally subject to revision as continuing studies enhance the understanding

-_" _ _'_1,_ _I_'
_IL_ a._la. _ a. _.. zzz_ _z_r._t L_I C S imA

ments, there is the unsatisfied need for definition of suitable techniques for

material property measurements. Accordingly, the program described here-

in treated the above problem areas and the present report presents the results

of investigations leading to: The definition of design criteria; the enhancement

of the understanding of failure mechanisms; the definition of unique design con-

cepts for composites; and the development of improved techniques for com-

posite property measurement.

The section on "Design Criteria" describes the failure criteria for lami-

nates, which have been computerized for structural efficiency analysis. Fur-

ther studies of the laminae failure mechanisms upon which this is based are also

described, including some treatment of time dependent behavior• The applica-

tion of these criteria is treated in the "Design Concepts" section, wherein the

utilization of the high uniaxial compressive strength of fibrous composites is

emphasized. Columns, plates and panels of combined composite and metallic

construction are designed and their potential is assessed. Concepts for im-

proved material performance including three phase and isotropic three dimen-



sional materials are also defined. In the final section, "Studies of Materials

Properties Tests" the results of the analysis of several current test tech-

niques are presented along with suggested new methods for uniaxial strength

measurements.



DESIGN CRITERIA

The parametric evaluations of fibrous composites for aerospace structures

(e. g. Refs. l and Z) have indicated the attractive potential of composite

structures which are configured to achieve high stresses. When efficient

stiffening arrangements permit the use of the high modulus composite materials'

high strength, the resulting structures are shown to be substantially lighter

than n_etallic structures. These studies emphasized the need for better

definition of composite strength. The prediction of laminate strength from a

knowledge of constituent properties is a complex undertaking and, in general,

strength estimates most suitable for design are obtained experimentally.

However, an analytical estimate is required in the assess,nent of the potential

of candidate composites which have not yet been brought to the practical fab-

rication stage. Indeed, the concept of analytically predicting composite pro-

perties for use in a structural application analysis, is an essential part of the

search for guidelines for the development of improved composite materials.

The strengths of fibrous composites, perhaps to an even greater degree

than their stiffnesses, are complex functions of the anisotropies associated

with the uni-directional character of filaments. For filaments in one (the

loaded} direction only, strength in tension {iRef. 3), compression {e. g. Ref. 4)

and shear {e. g. Refs. 5, 6) have been related to the properties of the consti-

tuents. Further study of these problems is described subsequently. Exten-

sions to reinforcements hl other dircctions have now been incorporated into

the computer programs for structural properties of anisotropic composite



elements (SPACEI. The aim is to provide a strength assessment for prelimi-

nary design studies.

Numerous strength theories have been proposed; the validity of which can

only be justified by experiments which are themselves complex and formidable.

A comprehensive tabulation of strength theories has been presented in

Reference 7. Among the theories proposed is the strength theory in References

8, 9. In this theory, the strength of a fiber-reinforced composite, considered

as quasi-homogeneous and anisotropic, is governed by a continuous failure

surface of Hill (Ref. 101. Once the failure surface is determined, the strength

of the composite body under any type of surface loading can be determined in

a straight-forward manner. This appears to be a reasonable approach for

composites with elastic perfectly-plastic fibers and matrix.

For most composites there is a vast difference between the strength of

the filaments and the strength of the binder, and failures in the binder may

be encountered as the maximum stress direction varies from tl_e filament

direction. In the simplest case, for example, of a unidirectionally reinforced

composite in tension, if the angle between the tensile load and the reinforce-

ment direction is increased gradually from zero to ninety degrees, three

primary failure modes can be expected to be encountered: first, at small

angles, tensile failure of the filaments; second, at intermediate angles,

shear failure in the binder; third, as the filaments become oriented mostly

transverse to the load, tensile failure in the binder. These failure modes are

essentially independent of one another. Particularly for the change from

4



tensile failure in the filaments to shear in the binder, there appears to be

little reason to expect a gradual transition of the type that leads to a smooth,

"yield surface" for homogeneous materials.

When the various failure modes are independent of each other for a com-

posite having an oriented structure, the applicability of a continuous function,

like Hill's anisotropic yield condition for a homogeneous material (Ref. 10),

to represent a yield or strength criterion appears open to question. Accordingly,

the approach utilized herein to determine strength criteria for composite

laminates has been to determine separately the strengths for all possible

failure modes. Thus, to a degree, a family of failure surfaces representative

of the material willbe generated, and the lowest of them for any loading

condition will be the governing one.

This approach is described in the following sub-section. This is followed

by a presentation of the recent studies of the strength properties of a uniaxial

laminate. Note that these latter quantities are required both for the dis-

continuous and the continuous failure surface models. The analysis is developed

first for composites where both fiber and matrix are elastic-plastic and a

continuous failure surface is defined. These results are then specialized for

rigid brittle fibers to generate strength values which can be used in a maximum

stress failure theory.

Laminate Strength

The strength analysis of a laminate of layers of uniaxial fibrous compo-

sites utilizes the elastic analysis, under given surface loadings, of the state

of stress in each laminate layer considered as quasi-homogeneous, i. e.

5



locally heterogeneous, but grossly homogeneous. If the surface loadings

increase monotonically and proportionally, there will be a stage at which

the stress in one (or more) layers of the laminate is at a failure point and

the layer, being assumed to fail, is replaced by a new degraded layer having

an assumed mode of degradation. As successive failure of constituting

layers proceeds, a redistribution of stress among the laminae occurs and

the slope of the load-deflection curve is discontinuous. The ultimate strength

of the laminate is reached when all the constituting layers have failed.

In each layer, the stresses referred to the principal axes of anistropy

are computed. If the shear or transverse stress is equal to its correspondin/_

yield stress, the lamina is considered to hold that stress level for tho_,_ com-

ponents and to have additional stiffness only in the fiber direction. As

successive failure oi constituting layers occurs, the entire load-defle¢:tJorl

history can be traced until a failure in the fiber direction occurs or until all

layers yield, at which point the associated applied load is defined as the failure

load. An illustration of the application of this approach is presented in Fig.

1 where calculated stress-strain curves for two simple laminates of E-glass

in epoxy are shown. For more general laminate configurations there will be a

greater number of straight line sections in the stress-strain curve.

For those applications where only the limiting stress levels - and not the

entire stress-strain curve - are required,

tion of failure criteria appears reasonable.

a simpler approach to the defini-

This approach is based upon the

concept that the first departure from elastic behavior is a most significant

6



point on a composite material stress-strain curve. It is desired to keep

actual stress levels below this point in a fashion analagous to the use of the

yield stress for metal construction. Similarly, at the ultimate stress level,

the transverse properties of the individual layers have generally deteriorated.

Thus this level can be approximated by using a "netting" analysis with the

uniaxial strength properties of the individual layers. The application of these

principles in the definition of failure criteria is described below. These

methods have been incorporated as a subroutine of the SPACE computer

program.

The basic stress strain relations for the laminate are given by:

a b1
-b d

)

I

Where N. and M. are the laminate stress and moment resultants, E . are
1 1 Ol

the middle surface strain components, _. are the curvatures, and a.., b.. ,
1 U U

and dij are the laminate elastic constants obtained by suitable integration of

the laminae elastic constants. For definition of laminate strength we desire

to treat the stresses arising from a set of applied stress resultants when the

curvatures are prevented. Thus we can consider above equation rewritten as:

M

-i ' -I bFa ' -aI

I

L ' J= L
!

!

ba-1 ' -1'd-ba
!



-1
where a is the inverse of the matrix a.

For zero curvatures we have

and

- (k) _ (k)_
(7. = C.. ¢
I IJ oj

where _(k) are the stress components in the k th layer referred to the

laminate axe s.

are the elastic moduli of the same layer referred to the same axes.

From these equations we may find the stresses, (7.(k),referred to the lamina
1

principal axes from:

(7!k)= T.. (_k) $.(k)
i ij j

no sum on k

where T is the transformation matrix for rotation of coordinate axes.

_k is the angle from laminate principal axes to lamina principal axes.

To evaluate laminate strength, the stress components (Tk are evaluated for a

laminate having its laminae thicknesses and the total load normalized. Thus,

the total thickness is unity and the load vector for axial load, for example, is

(I, 0,

(k)
(7.
In

0). With the stress components known, and the maximum strengths,

defined for each of the stress components, (as in Refs. 3, 4, and 5)

the _;_

lU

(k)

(7.
lu



are formed. The lowest ratio of this set of 3nquantities (for an n layer

laminate) is the material yield stress, (_
Y

The same analysis is now repeated for the case where the moduli E 2 ,

GIZ , and VZI are set equal to zero for all layers. Thus only E l, the modulus

in the fiber direction is non-zero and we have (for E 1 = vfEfl a "netting"

analysis. Here there are only n stress ratios and the lowest one is taken as

the material ultimate stress, (_ .
u

As an application, the yield stress of a symmetric biaxial laminate sub-

jected to an axial tensile load was treated• The results for these laminates

are presented in Fig. Z. Each curve represents the results generated for one

of the three stress components and the lower envelope curve is the design

yield stress curve•

Lamina Strength

It has been postulated (Refs. 8 and 9) that the strength of a unidirectional

fibrous composite, considered as quasi-homogeneous and anisotropic, can be

represented by a surface having the form of Hill's Generalized yon Mises'

Yield Condition (Ref. 4), namely:

Z Z
+ ZM T + 2N r

31 12
= 1

+ ZLTz3 (])+ H(TII_SZ)Z Z

where the coefficients F, G, H, L, M, N are parameters characterizing the

state of anisotropy and T. are components of the stress tensor referred to the
ij



principal axes of anisotropy xI x2 x3 where the x I axis is parallel to the

fibers.::-" In general, the yield condition (l) can be represented by a surface in

a stress space. A stress point within the yield surface represents a "safe"

stress state. Yielding can occur if the stress point is on the yield surface.

Since unidirectional fibrous composite layers in laminates are thin compared

with their lateral dimensions, only Tll, 722 and 7!2 are considered non-zero

if the x 3 axis is along the thickness of the layer. Furthermore, since uni-

directional fibers are randomly located in a composite layer, it can be assumed

to be transversely isotropic. Then the yield condition (1) reduces to

filli- l_!+ + rlZ _  llTz .
2

\ Xl \ X2 X12 X 1

- 1 (2)

where X 1 , X 2 and XI2 are the normal yield stress in the direction of the

fibers, the normal yield stress in the direction transverse to the fibers and

the yield stress in axial shear of the composite, respectively. These are the

three basic strength characteristics of the unidirectional fibrous composites.

Once these are known, the yield condition (2) can be employed to determine

whether a combined state of (plane) stress can cause failure of the composite.

In what follows, effort is made to evaluate the quantities, X 1 , X 2 and

X12 analytically in terms of the strength and geometry of the constituents.

;:_"Henceforth, unless otherwise specified, i, j = I, 2, 3; Summation on

repeated indices is implied.
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Limit Analysis of Unidirectional Fibrous Composites

The composite material under consideration consists of a

relatively soft matrix material in which stiffer fibers are embedded. Initially

both materials are assumed to be elastic-perfectly plastic and satisfy the yon

Mises' yield criterion. As shown in Figure I, referred to an orthogonal

Cartesian co-ordinate system, a typical unidirectional fibrous composite is

taken to be a cylinder with rectangular cross-section. Circular fibers run-

ning from base to base of the specimen are in Xl-direction. Limit analyses

of such a specimen with various arrangements of both elastic brittle and elastic

perfectly plastic fibers in an elastic-plastic matrix under various types of

surface loading will be described.

Elastic-plastic Constituents

In this study only the "random array" geometry is considered: circular

fibers of various diameters are randomly located in the specimen. Each of

them can be surrounded entirely bya concentric cylinder of matrix material.

A cylinder consisting of a fiber of radius rf and the outer matrix-shell of

radius r b is called a composite cylinder. It is assumed that a constant

rf can be chosen so that the composite cylinders are non-overlapping.

rb
The entire specimen can then be considered as an assemblage of composite

cylinders and the ramining matrix volume. The lateral boundary of the spe-

cimen may touch or cut through some fibers. In both cases the associated

composite cylinders are "incomplete". Since in practice fiber diameters are

very small compared with the transverse dimensions of the specimen, the

II



total number of fibers in the interior of the specimen is much larger than the

total number of those possibly on the lateral boundary. Hence, the total

volume of "incomplete" composite cylinders is much smaller than that of the

"complete" cylinders.

If V, V 1 and V2 denote, respectively, the total volumes of the specimen,

the composite cylinders and the remaining matrix in the specimen, the

following obvious relation holds:

v = v I + v z (3)

In the case where the entire specimen is occupied by composite cylinders,

V Z = 0. Following Hashin and Rosen {Ref.

"random array".

The yon Mises'

assumed to obey has the following form (Ref.

S.. S..
1_ 1_ _-- k 2
2

ii) this distribution is called the

yield criterion which the fiber and matrix materials are

iZ):

(4)

where S.. are components of the stress deviator and k is the yield stress in
19

simple shear for the fiber material (denoted by kf) or for the matrix material

(denoted by kb).

Under the conditions of plane strain perpendicular to the xl-axis, yon

Mises' yield criterion (4) reduces to

fT_ -T_ _2 + 4T_ Z Z

\ ZZ 33 / _3 -_ 4 k

(5)

12



where T22 , T33 and _3 are components of the stress tensor in the transverse

plane.

In order to evaluate the three basic strength characteristics (Refs. 8, 9)

of the composite specimen shown in Figure 3, the specimen is subjected to

axial shear stress Zl2, transverse tensile stress T2Z and longitudinal tensile

stress _], respectively. The upper and lower bound theorems of limit

analysis of plasticity (Refs. 13, 14) will be used to obtain bounds for the limit

L L L
loads TIZ , T 12 and T11 which represents the lamina strengths.

Case I. Axial shear stresses Ti2 applied on the boundary of the composite

specimen.

According to the lower bound theorem, a uniform shear stress field T12

can be chosen as the statically admissible stress field. Since T12 can nowhere

violate the yield condition (4) for both matrix and fibers, it follows that a

lower bound for the limit load T
L

is
12

L) = kbT1Z L

For upper bound construction, a kinematically admissible velocity field

is chosen as follows:

(a) In V Z (and thus also on the boundary of the composite cylinders) and

on the entire lateral boundary of the specimen,

u 1

uZ

U

3

\

°!
Y1 Xl

o !
(6)

where Y1 is a positive number.

13



(b) In any composite cylinder, referred to a local cylindrical

polar coordinate system, _:-"

u l

U r

u 0

I -Y1 r cos @
Y1 Xl cos @

Y1 sin @\ Xl

for 0_<
r_rf

YI _2= rbZ

YI Xl cos @

- Y I Xl sin @

for rf <__r ___rb

::'_The velocity field in any "incomplete" composite cylinder is defined by

solving similar elastic displacement boundary value problems for the

"incomplete" composite cylinder. However, since the volume of the "in-

complete" composite cylinder is small, the difference between their actual

contribution to the dissipation function and that obtained by treating all

cylinders as "complete" is negligible. This approximation is implied in

the subsequent analysis wherever a similar situation arises.

14



The velocity field (7} in a composite cylinder is the elastic displacement

solution to the boundary value problem with the boundary condition (6) pre-

scribed. The problem is the same as that which was formulated by Hashin

and Rosen (Ref. ll) with the modification that for 0_<r -<rf , the velocity field

is associated with rigid body motion.

With this velocity field constructed for the entire specimen, the dissipa-

tion density function and the rate of external work done can be obtained to

L (Ref. 5).yield an upper bound for 712

1 U _ 1 R I+ p +

o

_2

R

cos @d @dR (8)

The above expression is for "random array" in which V Z

Z

volume fraction vf = _ .

= 0 and the fiber

The integral in (7) is integrated numerically for different fiber-volume

fractions, The result is shown in Figure 4 where lg v in (8) is plotted

zI kb
,< _: z ras a function of vf(0 vf i, vf _ . Note that pa ticularly in Figure 4,

vf-_ 0 , 1 Ju = i,

lim (T iL)u 4__

vf -_ 1 kb =

From the above result, it is concluded that XIZ is at most about 27% above

and at least the same as the yield stress in shear for the matrix.

15



Case Z . Transverse tensile stresses T22 applied on the boundary of the

composite specimen.

For lower bound construction, a uniform tensile stress T22 throughout the

specimen is chosen as a statically admissible stress field. Since the yon

Mises' yield condition (4) can nowhere be violated in the specimen, the lower

bound associated with the constructed statically admissible stress field is

For upper bound construction,

chosen as follows:

a kinematically admissible velocity field is

(a) In V Z (and thus also on the boundary of the composite cylinders) and

on the boundary of the specimen,

0

- YZ x3

2

u 1

u Z

u 3

(io)

where YZ is any positive number.
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(b) In any composite cylinder, referred to the local coordinate system,

u 1

u2

u3

0

r- [- 2 2

__YZ x 2_A x2 + 3 x 3 + A2 I+A2 2 3

2r
f

-Y2 x [A +A3-_- 3 i+ A2 3x_ + x23
2

2rf

4 2

rf (-x 2 + 3x_ ) + A

6 4
r

4 2 2 2

rf (3x 2 - x 3) + A4 rf
6

r

2.2 2)1
rf (x____2 i x_3

2 r 4

(-x 2 + x 3 )

• 0

2 3 2

Y2 x 2 B I + B 2 x2 + x3

2 2r_

22j- 3x 2 + x 3
Y2 x 3 B + B 2

-2-- 1 _:Z
_. rf

for 0 -- r-
_ . rf

,{ }A 2 = _ 4 (1-_)(l+N)(1-_ 2) _2

'{ EA 3 = _ (1-_) (1-_) _Z + (l+rl)
_2

[ ']}4(l-n) -zn+(l+_) (i+ _-6) _4

'8 (i-_) _4_ 6 (i-_]) _2 + Z(I+T])

_2

8 (i-_) _z (l__z)

whe r e

'tAI= _ 4(i-_)(I+_)_4-3(i-_)(i+_)_z+_-

1

A 4 = --C

i
B -- --

1 C

1
B -- --

2 C

and C

)2(,+_ i

.2

= (I-_)Z _6+ 4(l-l]) (I+_) _4. 6 (i-_]) (l+'q) _Z+ 4 (I-T]) (i+_) + (l+n)

_Z
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The velocity field (l l) in a composite cylinder is the incompressible

elastic displacement solution to the boundary value problem with the boundary

condition (10) prescribed. The problem was formulated by Hashin and Rosen

(Ref. ll) in evaluating the effective plane strain shear modulus of elastic

fiber-reinforced composites. The constant 11in (Ii) considered as the displace-

ment solution to the elastic problem is the ratio of the elastic shear moduli

of the fiber and matrix materials. However, it can be considered as merely

a parameter when (ii) is used as a kinematically admissible velocity.

For the case of the "random array", an application of the upper theorem

gives an upper bound

(TzL)u - kf ii + i2 (12)

2 k b k b

where

Z(l+'q) Z

fo_ I 8(1-q) _4-6 (l-'q) _2+ #2 + 12(i-q) (I-_ Z) R
11=2 R

C
dR

and

1 2_r

12 = -C- --'/_i(i_, _, R) + _2(q, #,R) cos e d@ dR

in which

_l('r], _,R) = {4 (1-'q)(1+11) _4 -3 (I-T])(l+'q) _2 + (I+TT)z#_
+ 6(i-q)(l+ q)(1-_z)R z

+

R. 4

_, F (l+'r],) + (l-rl) _J
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_z(_,_,R)= 21,_(i-_)(i+_) _4

(1-r_) _4 _ 3__ [_(1-_q )2 2 2
R R

and _2 = vf.

_3(1_q)(1+rl)_2 + (l+r_)
_2

]
+ (l-rl) _2| + 262

]

-- +6(I-_)(1+_)(I-62)R21

[-2Tl+(l+'q )(l+166 )] I

For any finite kf/kb and for T]-. _ , (12) becomes

T L
122)v _ 2 1 2_

2k b _(l- _2) 3 f f R,/%I(_'
6 o

R) + _2 (6,R) cos _ dOdR (13)

whe re

_4 3 z+ 6 2 r(4_+_.+ i)+ 3 _2 R 2
_I(_,R) - 4 (_4+_2+1) - 2 (_ 1) _ + 2

R R

and

_2[( 3 62 ] [ (4_4+ _ 2 + 1) 3 62 R2]_2(6'R) = ZR-2 64+ 62+1)- 2-(_2+I) --2 2 F
R

The right hand side of expression (13) was obtained in Ref. 5 for

an upper bound of the limit load (normalized with respect to %) for transverse

shear stresses applied on composites reinforced with rigid fibers.
/T \

p o.e  ,unc  ono,v, ccor  ng
with

(r2L) liralim 2 U = 1 and

vf-'O 2 k b vf -'i

(¢)

and I 2 in (12). For example, for _= 100,

increasing function of vf

On the other hand, for any finite _,

by evaluating numerically I1

In Figure

It is a monotonically

L

2 k b

can be plotted as a function of
U

L

022) U

2 k b
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1tim and
is also a monotonically increasing function of vf _vf -_0 Zk b

lim _ kf

vf-_ 1 U - / , which is shown in Figure 3, with kf = l0 . It is
2kb kb _bb

observed that for fiber volume fractions smaller than about 75%, the upper

bound for the limit load T22L is higher that for _-_ _ but for higher fiber volume

fraction, the opposite is true. Therefore, for any fiber volume fraction between

0 and i, the lower value of the bounds obtained from _]= I00 and _-_ will give a

L

better estimate of TZZ and it is shown in Figure 5 in solid line as a function of

V o

f

It is interesting to note that for T]= l, (12) reduces to the following

simple form

= l+vl kf

which is commonly known as the "rule of mixtures" . From Figure 3, it is

(14)

seen that the straight line represented by (14) will be higher than the chosen

curve for ITZf)U for 0 <vf <i. Therefore, it is concluded that the "rule of

mixtures to be used in this case would overestimate the composite strength.

InFigure 5, ITZL) Z obtained from (9)is also shown. The difference

between the upper and lower bounds for vf -_0 is due to the fact that in the

upper bound construction, a plane strain velocity field is used as a kinemati-

cally admissible velocity field.

Case 3. Longitudinal tensile stresses TII applied on the boundary of the

composite specimen.

2O



The study of longitudinal strength of unidirectional fibrous composites is

extensive. Various models and failure mechanisms have been proposed in

the literature. Here, the yield strength in axial tension is obtained by the

construction of very simple velocity and stress fields, for composites having

elastic-plastic fibers of uniform strength.

For upper bound construction_ in the entire region of the composite spe-

cimen, a kinematically admissible velocity field is chosen as

iullIoxliu 2 _- eo
-_- x2.

u 3 - ¢o x 3 ]
2

An application of the upper bound theorem gives

(15)

or

(TI = 1 +vf

%

where _ and Tb are the yield stresses in tension for the fiber and matrix,

respectively and vb = 1 -vf.

Relation (15) is known as the "rule of mixtures" for the predication of the

strength of a composite. IfTf andTbare given, (tiE)U is alinear function of

T b

fiber-volume fraction vf .
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For lower bound construction, if the applied stress Tll is assumed to be

uniformly distributed on the boundary of the composite specimen, then a

lower bound (TiLl L is equaltoTb • However, ifwe assume that the tensile

stress Tll is not uniformly distributed on the boundary surface and we are

only interested in the average stress intensity on the boundary surface that

causes failure, then a higher lower bound can be obtained. In fact, a statically

admissible stress field can be chosen as follows:

In the region occupied by fibers

T..

:J1,0010 0 0

0 0 0

(16)

In the region occupied by the matrix,

T..

:J= 0010 0

0 0

(17)

It is obvious that the stress field expressed in (16) _nd (17) satisfy the re-

quirements to be statically admissible.

The average traction corresponding to this stress field is therefore

Tf vf +r b vb (18)

which can be taken as T1 L "

L
According to (1 _ --_ _,_ _,_r _ ,_,w_ uuu,,u_ for Tii

COlflC iLle.

Therefore, this strength can be determined from the "rule of mixtures", for
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this type of compositep(i, e. elastic-plastic fibers and matrix of uniform

yield strength).

L
From the above results, it is observed that obunds for T22 are far apart,

especially for high volume fractions. Further effort should be made to im-

prove the bounds in order to have a better estimate of the limit load. For lower

bound construction, uniform stress distribution used as statically admissible

stress fields can only give lower bounds which are the corresponding matrix

yield stresses. In order to obtain higher lower bounds, one has to assume

applied tractions to be non-uniformly distributed on the boundary surface

according to the properties of the fibers and matrix. Equilibrium stress fields

can then be constructed in equilibrium with the applied tractions. Then the

lower bound theorem can be applied to obtain higher lower bounds. To decide

the distribution of the applied tractions on the boundary and to construct an

equilibrium stress field in the body is not at all easy in general. The success

in the construction of such a statically admissible stress field for Case 3 is

due to the simplicity of geometry and loading conditions.

Brittle Fibers

In the previous section, the strength of unidirectional fibrous composites

has been evaluated by obtaining bounds for the basic strength characteristics.

The theory assumes the existence of a continuous failure surface. This hypo-

thesis appears reasonable for composites with elastic-perfectly plastic

fibers and matrix such as metal fibers and matrix. However, for contemporary

high strength fibers embedded in epoxy resin matrix, this "elastic-perfectly
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plastic model" may seem inadequate. Instead, it seems more suitable to

assume elastic-brittle fibers and an elastic-perfectly plastic matrix which

obeys the yon Mises' yield criterion. Upper and lower bounds have been ob-

rained for the following types of surface loadings:

i. Tractions equivalent to a uniform shear stress rl2 applied on the en-

tire boundary surface of the specimen.

2. Tractions equivalent to a uniform shear stress TZ3 applied on the

entire boundary surface under the conditions of plane strain.

3. Tractions equivalent to uniform uniaxial tension rgZ applied on the

entire boundary surface under the conditions of plane strain.

4. Tractions equivalent to biaxial uniform tension TZ2 and I"33

(zzz :_ T33 ) applied on the entire boundary surface under the conditions

of plane strain.

5. Tractions equivalent to combined in-plane shear 1"lZ and transverse

tension _2 (rll = _ >_0 ) applied on the entire boundary surface.

Since the method of analysis is similar to what has been presented in the

preceeding pages in obtaining bounds for the basic strength characteristics,

details of analysis will be presented in Appendix A. However, results are

summarized as follows:

i.

the

rlZ U _ I (i+_4) + 2 -- cos
4 2

R Rkb _ {1- _Z} o

d_ dR
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L
for the "random array" geometry. The above expression for (712)U is the

kb
same as (8} which is shown in Figure 4 as a function of vf (0 < f <l, vf = _Z)

since the same velocity is used here.

For arbitrary geometry of arrangement of fibers,

which is higher than \I_/U

L) = kb"TZ3 L

kb

I0_

given by _oi.

k b

_/_/1 {_' R) + _fZ(_,R) cos _ d_tR

vf

whe re

and  lt-_f2(_, R)=---_ 2 (_32+ 1)
R

_2

f 22! 
(4 #+_ + 11+ 36 R

2

(4_4+ _2 + 1) + 3 _2R
Z

/ Tx

for the "random array" geometry. The above expression for (Tz7)

kb

same as (13) which is plotted in Figure 5 as a function of vf with

is the
U

lim Z 3 U
lim T2 U = 1 and vf 1
vf -*0 kb -* kb

---- O0

since the velocity field chosen here can be obtained from (I0) and (ll) through
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o L

='kb

T L L(22)u =2 T23 U

o

- 3)u _"23) u

and

So

kb /1 2

L

(T,2)L
_o // 1 2+ o_

(19)

for & __0 .

For the case of the "random array" geometry,

CTZL_ __ min I3

2

(20)

and
(_'IL_j _ min & 13

kb Icol 1 +a _
2
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where
1 Zy

ff13 = R

o

%/_I(_,_,R)+_Z(_,_,R) cos @+_3(_,R) cos Z @

i(_, _, k)

+ 13 }ZRZ

I [_4 3 3 (_Z +1)
= 4 _ (_4+ _3+ 1)- _- (_Z+l)-_- -_

A

(4_-_+[Z 7 Z) _ ? a / _4\

2 + 1 )J I+ ¢0" (1-_-)- l1 +R'4)

0 Z (_, _, R)= X o_Z(1-_Z) 4 _Z
Z

R

and _3 (_, R)= 8R--Z (_4+ + i)- _ (f_ + l) _-_ 3 R -

L L

Numerical calculation is performed to obtain (r22)uand(T
from

lZ/U

(20) for different values of _ and c_. The results are summarized in Figure 6

Z
in which _ = 0.8 is the highest fiber volume fraction shown. The dotted line

represents (19)which gives the lower bound f°r(T'_Lhand(T\a_ / iL) f°r any _.

It is worth mentioning that for this model of elastic-brittle fibers embedded

in elastic-perfectly plastic matrix, in the upper bound expressions, only the

matrix strength and fiber-volume fraction appear - the brittle strength of the

fibers is not involved. This is due to the fact that rigid body motion of fibers is

always incorporated into the kinematically admissible fields. Hence, regions

occupied by fibers in the composite body contribute nothing to the dissipation

function: The result is reasonable since in reality, elastic moduli and brittle

strength of fibers are much higher than the corresponding elastic moduli and
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strength of the matrix material. On the other hand, the longitudinal strength

along fiber-direction of fibrous composites under tension or compression cannot

be obtained by limit analysis of plasticity because of the presence of the high

modulus, high strength elastic-brittle fibers. Instead, a statistical failure

theory was established for tensile strength [3] and a fiber-buckling model was

postulated for compressive strength of fibrous composites [4] and [15]. These failure

mechanisms are based on experimental observation. Furthermore, as men-

tioned previously, for this mathematical model of composite material, the

existence of a smooth yield surface that governs the strength of the material is

still an open question. Based on experimental investigation, the failure mech-

anisms for individual cases seem to be different and independent of one another.

Accordingly, the approach to the determination of the strength criterion for uni-

directional fiber-reinforced composites as well as fibrous composite laminates

is as described earlier. Instead of using a continuous yield surface, all possible

failure modes are considered. To determine which one is dominant for a parti-

cular type of loading condition can sometimes become a tedious task especially

for fibrous laminates under various types of design loading. However, this

approach has the advantage that the entire load-deflection history can be traced

until complete failure occurs. With modern high speed digital computers avail-

able, a systematic strength analysis can be programmed to obtain accurate

results.

For certain composites, it is possible to utilize, as an alternate approach,

the application of limit analysis methods to the laminate as a whole. This is

treated in the following section.
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Application to Laminates

It is interesting to note that the kinematically admissible velocity fields

constructed to evaluate the upper bound for the three basic strength characteris-

tics can be used to obtain upper bounds of limit loads for in-plane loading applied

on laminates•

To demonstrate the method, consider a laminate composed of uni-

directional fibrous laminae subjected to in-plane shear stress Tl 2 . The

g

problem is to find an upper bound for the limit load T A typical constituting
12

-(k) direction, is shown
layer, the k TM layer, in which fibers are all running in ×l

in Figure 7. Depending on the orientation of fibers in the layer, the principal

axes x (k) x (k) x can be defined by an angle @(k} measured from the lami-
1 Z 3

nate axes x x x
1 2 3

For upper bound construction, a kinematically admissible velocity field

is constructed in the following manner:

The velocity field (_I' D ' D ) = (0, V 1 x l, 0) is assigned in V lZ 3

of each layer, referred to XlXzX 3 axes. In the k th layer referred to its prin-

cipal axes x (k) x (k)
1 Z x 3 , the above velocity field is transformed into the

following form:

(k)
__i

(k)

5(k)

Y1 sin @(k) cos @(k) xl(k) = ¥i sinZ 6(k) xz(k) _

Z (k) (k) _ Y sin 6 (k) (k) (k) ! (Zl)

cos x I I cos 6 x 2

0

= ¥
1

The right hand side of equation (21) can be decomposed into four parts

so that

Z9



whe r e

-_(k) : -_ (k) +-_ (k) +-_3(k) +-_ (k)
__1 __Z __ __4

- (k) _
_aI =

- (k) :
_l

Z

0 !z (k) (k)
cos 0 x 11

0

0

-¥
1 (k) (k) (k)

sin O cos O x_
Z Z

¥i c
-_- sin _(k) os 8 (k) x3(k)

\

1

(zz)

and

-- (k) =
_a3 -

Y1 sin _(k) cos o(k) xl(k )

-y

1 (k) o(k) (k)
2 sin 0 cos x Z

-y

1 6(k) G(k) (k)
2 sin cos x 3

_y sin Z 8(k) x (k)
1 2

i

- (k)
uI ,
--v

in V Z

Except for multiplicate factors and reference coordinate system,

u2(k), and u3(k) are the same as those velocity fields constructed

for the three different cases of loading in the proceding section,

Furthermore,
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-- (k) =_
u

__4

-y
1 z (k) (k)sin x Z

0

0

0

-Yl sinZ 6(k) xl(k)

0

I +

/

Z
-y s in

I

Z

Yl sin

0(k)

e(k)

×z(k) I

(k)

x 1 (23)

-- (k)
where the first part of the decomposition has the same form as u

__l

second part represents a rigid body motion of V z as a whole.

while the

_-, ..... 1__-_._ e_l._ c_.,_=en _., v is _l_c_ onmposed of four Darts: The first

- (k)
part is due to_,lU , which is the same as (7) with the modification that g l

2 (k) -- (k)
COS

The second part is due to u Z which is the same as (ii) with the

modification that YZ is now replaced by -YI sin 0 (k) cos o(k) The third part

-- (k) (k)

is due to u 3 which is exactly the same as u 3 in V . The fourth part is due

- (k)
to u 4 which can be obtained in the same way as in Case 1 in the preceding sec-

tion. However, a moment's reflection reveals that the strain rate associated

- (k) Z (k)
with u if Y1 cos _ is replaced by -YI sin?. _(k) since the additional rigid

__4

body motion contributes nothing to the value of the strain rate. Now, after

the kinematically admissible velocity field is constructed as described above,

the associated strain rate and dissipation density function can be calculated

without difficulty. Moreover, the rate of external work done can also be cal-

culated so that an upper bound for _"
L

IZ
can be obtained.

As an example, consider a laminate composed of two unidirectional

fibrous composite layers of equal thickness with 6 (1) = 0 and 8 `2.(_
2

In this simple geometry of lamination, the kinematically admissible

velocity field constructed above reduces to a very simple form.

For layer 1, the velocity field (21) reduces to
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I
_i(I)

- l)
_2(

J3 (i)

y x
1 1

(i)
in V Z (24)

For layer Z, the velocity field (ZI) reduces to

_,(2) ( -_, x. (z) 1

7z(z) = 0

_3 (2) 0

in V Z (25}

Then, following the principles described above, it is easy to obtain the velocity

fields and the associated strain rate fields for both layers. After some mani-

pulation, it turns out that

(TI2)U _ 1 R 1 + + 2 cos 6 d_ dR

kb z (I-_ Z) 0 R 4 R-_

for the "random array" geometry.

The above equation is exactly (8), which means that the upper bound

L

(TIZ)U is not higher for this type of cross-ply laminates than for the uni-

directional fibrous composite.

Similarly, it is easy to show that the three types of velocity fields con-

structed in the preceding section can be used to construct upper bounds for

limit loads for laminates subjected to any in-plane stresses.
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Tensile Strength

The high-strength, high modulus fibers which are of interest for

use in composite materials are generally brittle, having tensile strengths

that must be characterized statistically. Any theory for the tensile strength

of composites containing such fibers must take into account the dispersion in

their failure stress levels in order to have any relevance.
(16)

Parratt noted the dispersion in fiber strength and suggested that

failure of a fibrous composite subjected to tensile load occurs when the

fibers have broken up into lengths so short that any increase in applied load

cannot be transmitted to the fibers because the limit of interface or matrix

shear has been reached.

A theory has been presented (3) for the failure stress of composites

containing continuous, uniaxially-oriented, brittle fibers in a ductile matrix

loaded parallel to the fiber direction. This theory predicts thst due to the

distribution of flaws or imperfections in the fibers there occurs a series of

randomly-distributed fiber fractures as the applied stress level is increased.

It is argued that a portion of the broken fiber in the vicinity of the

fracture is ineffective in resisting the applied load. Assuming that the stress

in a broken fiber is uniformly distributed among the unbroken fibers in the

cross-section and that this overstress acts over a length equal to the "in-

effective" length, it is predicted that failure occurs when a weakened cross-

section cannot sustain an increase in load. In effect, the theory pre-
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diets that the composite has a strength equal to that of a bundle of fibers

whose length is the "ineffective" length.

The present study considers fibers having a statistical strength dis-

tribution resulting in fractures at various stress levels as the applied load

increases. It is assumed that the stress in the broken fiber is distributed

uit_veiily tO the Utli_i lIu_i'S Iti tli_ uium_-sectiOii wJiiull _ & i_i_LH equal to

the ineffective length. As a first approximation the effect of this overstress

is presumed to affect only those fibers adjacent to a break. Failure is as-

sumed to occur due to an increasing probability of fracture in the fibers ad-

jacent to a prior break.

Description of the Model

The model consists of a two-dimensional composite of length L

consisting of a ductile matrix in which are imbedded N continuous brittle

fibers whose orientation is parallel to the applied tensile load. The fibers

are considered to be composed of layers of length 8. The total number of

layers being M = L/6. (See Figure 8.)

The quantity 6 represents some length over which the stress is per-

turbed in the area of a fracture. It is variously referred to as the ineffec-

tive length or twice the transfer length and several formulae have been proposed

for its evaluation. Two of the definitions(3_, (17)are based on an elastic shear-

lag type of analysis. The axial stress in a broken fiber is found to be
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_f(x) = aO[1 + sinh Nx -cosh Nx_
(1)

where

1/2
2 G b vf 1

= 2

Ef l_vfl/2 2rf

fiber end.

E = Young's modulus of fiber
f

G b = Shear modulus of binder (matrix)

r = Fiber radius
f

v = Volume fraction of fibers
f

x -- Distrance from end of broken fiber

c_ = Extensional stress in the fiber at a large distance from the
0

It should be noted that in Reference 3 the factor of 2 in the expres-

sion for Nwas incorrectly omitted. The first author defines 6 as the value

of x for which the stress in the fiber has reached 90°70 of c7 the stress at a
0'

long distance from the fiber break. On the other hand, Friedman defines the

ineffective length by means of an approximate step-function stress distri-

bution which has the same average stress as the distribution of Equation i.

Furthermore, this author includes the ineffective portion on both sides of

the break whereas the first definition uses only one side.

The expressions for the two ineffective lengths discussed above

are, respectively
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5
R

d
f

- 1.15
f Ef l-vfl/2_ 1

/2

(z)

5F

d
f

I_ Ef l-vfl/Z 1

- c b i/2
L vf _1

1/2

(3)

If the shear stress between the matrix and fiber is assumed to be

constant, as in the case of plastic flow or frictional shear stress due to inter-

face failure, the fiber tensile stress becomes constant at a finite distance

from the fiber end. This distance is called the transfer length C by some
t

authors and is given by the expression

aor f
._ _

t 2T

where I" is the (constant) plastic shear stress of the matrix, or, if there is

interface failure, the frictional force between the matrix and fiber.

The ineffective length can also be determined experimentally by a

photoelastic examination of the stress patterns in the vicinity of a fiber break.

In this investigation the experimentally determined ineffective length is used

where available.

Statistical Analysis of the Model

IL is as_uzneu Lnat the _trength of _ ........... ion of _1u_i-............ C_H_nLS of

length 5 can be characterized by a cumulative distribution function F(o). That
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the probability that an arbitrary element has a failure stress level less

or equal to _ is F(a).

The expected number of elements in t_e composite that will fail under

fiber stress _ is

E = MNF(<_) . (4)

This expression includes the possibility of further fractures of adjacent

fibers. If the composite does not fail, the stress in the broken fibers is dis-

tributed to the other fibers in the cross-section in a complex manner. As a

first approximation, Hedgepeth(18)used a shear lag analysis to determine the

average stresses in fibers adjacent to an arbitrary number of brokcn fibers.

He considers an infinite two-dimensional array of fibers subjected to

tensile load parallel to the fiber direction which is uniform at a great dis-

tance from the fracture area. The ratio of stress in the two fibers adjacent

to a run of r broken fibers to the uniform applied stress at infinity is, for a

static stress distribution

4.6.8 ..... (2r+2)
K : (5)

r 3" 5" 7 .... "(2r+l)

Hedgepeth calls K a stress-concentration factor, but in this paper it will be
r

referred to as an overstress-factor so that it will not be confused with stress

concentration factors found by an "exact" analysis of the stress distribution.

I 1 • 1L ....... 1For the case where r fibers orea,< _l_nuRa_L_uu_ly'_'t,,_ .... ,:,.,.,_,,_,._+'_d _,-_,,_-_,.._,.

strated that the ratio of the maximum dynamic stress to the static stress in
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the fibers adjacent to the break increases from 1.15 for r = 1 to a limit of

I. 27. The values for r --2 and r = 3 are ].19 and 1.20 respectively.

In the present paper it is assumed that the overstress in two fibers ad-

jacent to the broken ones exists over the entire ineffecth, e length. Therefore,

the probability that an element adjacent to r broken elements will fail is,

approximately, the probability that its strength lies between _ and K _.
r

This probability is equal to

F(K _)- F(_) (6)
r

This approximation is justified, as will be shown later, by the fact that com-

posite failure occurs for small values of F(o) and therefore the probability of

having adjacent fractures because both fibers have strength less than c, which

2
probability is proportional to F(C) , and the probability of interaction of frac-

ture groups is relatively small.

Given that a single element is broken the probability that one of the two

adjacent ffbers will break is

2

P2/I = 2[F(KlO)- F(o)I -2 [F(KI_)- F(o)] o (7)

The probability that both adjacent fibers will break simu]taneously is

P3/I [F(KI°) F(°)] 2= - (8)

It should be noted that each of these expressions does not exclude the possi-

bility of further fractures.
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It is now assumed that only the two fibers immediately adjacent to a break

are subjected to an overstress and that all of the remaining fibers in the cross-

section have a stress level equal to the average stress (_. If one of the fibers

adjacent to a single fracture breaks the fibers adjacent to the two broken

fibers are subjected to a stress level K2(_. One of these overstressed fibers

was pi-eviously exposed to a _-_s .....

average stress _. The probability that one of the two fibers will break is

P3/2 = IF(K2 g) - F(KIa)] + [F(K2g) - F(c)] (9)

-Z [F(K2_) - F(K _)] [F(K _)- F(_)] .

The probability that both fibers will break simultaneously is

P4/Z = [F(K2<_) - F(KIg)] [F(K20) F(s)] (i0)

If both fibers adjacent to an initial fracture break there will be three

broken fibers in a row and therefore the two fibers adjacent to this group,

which were previously at a stress level _, will be subjected to a stress I< _.3

Again it is possible for one or two of these fibers to break, and so on.

By now the process and complexity of the problem should be evident so

that the expressions for further fracture probabilities are presented without

discussion. Note that that there are two paths by which a state of three

broken fibers can be reached from a single break; A) by the simultaneous
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breaking of both fibers adjacent to the initial break, 13)by the successive

breaking of two fibers.

The expression Pi/jz represents the probability of having i fibers

broken given that j are already broken. The letter z represents the particular

path if there is more than one° The letters A and B refer to the paths des°

P5/3A = [F(K3(_) - F(<7)]Z (lla-d)

Probability of Cumulative Fractures

Each of the El fracture sites distributed throughout the composite is a

nucleus for further fiber breaks because of the overstress in adjacent fibers.

The probability that an element will break followed by the fracture of at least

one adjacent element is

Pz : F(_) (PZll + P311) (IZ)

Therefore, for the composite as a whole the expected number of groups of

two or more broken fibers is
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M(N-I)p 2
EZ - Z ' (13)

and the associated probability of having at least one such group is

1 M(N-2)
PZ = 1-(1-_- p2 ) (14)

where the factors of I/2 are introduced to account for the independence of or-

der of two fractures.

The probability that an element will fracture followed by the breaking of

at least two other fibers in a row is equal to the probability of at least two

fractures less the probability that two will break without further fractures

occurring. This probability is

P3 = P2 - F(c_) P2/1 (1-P3/2-P4/2) (15)

The probability of having at least one group with three or more frac-

tures is

1 )M(N-2)
P3 = I-(i-_ P3 (16)

and the expected number of such events is

l

E 3 = _ P3M(N-2) (17)

The analogous expressions for groups of four or more fractures is

P4 = P3 -F(¢) [P3/I(I-P54/3A ) + Pz/IP3/2(I-P54/313 )] (18)

1 M(N-3)

P4 = 1- (1----_-p4) (19)
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1

s4 = -g Ps M(._- 31 (Z01

Although it has not been possible to obtain the general expression for the

probability of a group containing an arbitrary number of broken elements it is

contended that this expression is only of academic interest. It is argued that

once the probability of secondary breaks (i. e. the probability of groups con-

taining two or more fractures) becomes singificant failure of the composite

can be expected. More will be said of this point later on.

Comparison with Experiments

The ultimate test of any theory is its agreement with experimental re-

sults. The present theory has been compared with the data obtained in Refer-

ences 17and 4 for glass-epoxy composites.

The tests reported in Reference 4 were run on composites consistin_ of a

single layer of 3 i/g mil E-glass fibers embedded in two resin systems (B and

C}. Tests were run to determine the strengths of the fibers for several gage

lengths. As in Reference 4, it is assumed that the cumulative distribution

function can be characterized sufficiently well by the Weibull distribution.

-c_L_B
F(CY) = 1 - e

where E is the length of the fibers and ct

ize the distribution.

with gage length is

c L --(ctL}

(21)

and 8 are parameters that character-

Using this expression the variation of mean fiber strength

r(l+I/6). (zz)

1

B
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The fiber parameters are found to be

1

= 9.40 , _ _ = 181.5 ksi.

From the photographs of the specimens under polarized light the inef-

fective lengths for series B and C were found to be 0.031" and 0._86", res-

pectively.

Using this data the expected number of single broken elements were

calculated from Equation 4, and are represented by the dashed lines in

Figures 9 and i0. The number of fractures observed experimentally in the

various specimens in the two test series are presented for comparison. It can

be seen that for low stress levels there are generally more fractures than the

theory predicts. However, the behavior is most important at the higher stress

levels in the area of failure loads, and here agreement is fairly good consider-

ing the statistical spread in fiber properties andt_eexperimental uncertainties

involved. The relatively large number of fractures at low stress levels is

possibly a result of damage to the fibers during fabrication of the specimens

since glass is notoriously sensitive to handling as far as strength is concerned.

However, since the observed fractures approach the expected number of higher

stress levels they are of little importance. If, on the other hand, failure

occurs without a significant accumulation of fractures the breaks at low stress

level may be of extreme importance. More will be said of this later on.

_2' _3 and _ wrle _. _i_= _,(.... re _ i-epres .... e expccte _The quantities of El , 4 i

number of groups of fractures having at least i broken fibers) obtained in
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Equations 4, 13, 17 and 20 are plotted for test series IB and C in Figures ii and

12. It can be seen that the expected number of multiple fracture groups {E 2,

E 3 and E4} rise sharply in the observed range of composite failure. The fail-

ure predictions of Reference 3 are presented for comparison.

In order to assess the validity of the expressions for multiple fractures

the number of groups of multiple fractures were counted on films of tL_ tests.

The results are plotted in Figures 13 and 14. The dashed curves in the figures

are calculated values of E Z. It can be seen that, in general, multiple breaks

begin to appear in the stress range predicted by the theory. Furthermore,

the composites fail without the occurrence of a large number of multiple-

break groups compared to the number of isolated single fractures.

There are several factors that could account for this phenomenon. One

possibility is illustrated by Figure 15. This graph shows the relative behavior

of the sum P2/I + P3/l for static and dynamic overstress factors. It will be

recalled that this sum represents the probability of the fracturing of at least

one element adjacent to a single broken fiber. In the observed failure range

the dynamic curve is markedly higher than the static curve indicating that

there is a definite possibility of a failure crack being caused by the dynamic

effects of fiber fracture rather than by cumulative static probability of

failure. It should also be noted that the use of overstress-factors is just an

approximation and that the actual stress concentrations caused by multiple

breaks may be, and probably are, much more severe than those of single

fractures. (As an analogy, the stress concentration factor for an ellipse
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increases with the aspect ratio) Whatever the mechanism, experimental ob-

servations seem to indicate that multiple breaks tend to occur shortly before

composite failure.

The present theory was also compared with two tests on continuous

(17)
glass fibers in epoxy run by Friedman

strength distribution of fibers used are

1

= 4.0 , _ = 137.1.

The Weibull parameters for the

Since _ is an inverse measure of dispersion,

spread in failure stress levels than did those of Reference 4.

sion is reflected in the wide spread of the curves of E l, E 2,E 3

these fibers had a much wider

This large disper-

and E 4 pre-

sented in Figure 16. However, failure in both specimens occurred quite

near the stress level for which the first multiple fracture is predicted.

On the basis of the experimental evidence cited it is proposed that the

failure stress of a continuous fibrous composite loaded in tension parallel

to the fibers can be reasonably well predicted by that load for which the first

multiple fracture is expected to occur. That is,

M(N-I_ i. (23)
E 2 - _ (_) (pz/1+P3/l) =

Analysis of Non-Cumulative Fracture Mode

Although a large number of isolated, fractures are observed in glass-

epoxy composites, this is not the case for other fiber-resin systems such as

boron-epoxy and boron aluminum. For these composites failure usually
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occurs catastrophically, without an accumulation of isolated fractures. How-

ever, Zenoe(19)has demonstrated scattered fractures in a boron-aluminum

composite containing 5%volume fraction of fibers, which is quite small.

The absence of a significant number of isolated fractures seems to indi-

cate that the entire composite is failing at the load at which the weakest

fiber breaks. This would mean that the matrix is actually detrimental since

the strength of a bundle of fibers, without a matrix, would be stronger. It

was, therefore, decided to determine the theoretical value at which a first

fiber fracture is expected and cornparethe results with experimental evidence.

Consider a population of fibers of length L whose strength is character-

ized by the probability density g(CT). For a sample of N fibers from this group

the distribution function for the strength of the weakest fiber has the following

form

po( ): N-I (Z4)

Assuming a Weibull distribution for G(c_) the expected value (model for

the first fiber fracture is found to be

U

e

I

(ZS)

Friedman (17)ran two tests on bor0n-epoxy specimens Z inches long which

contained about 90 fibers. The Weihu!] parameter_ fc_r the fiher_ were fcmnd

to be
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1

B = 7.0, m B = 368.

The fiber stress levels at failure for the test specimens were 193 and 215 ksi

The expected value for the first fracture computed from Equation 26 is 171. 5

ksi which is about 16% lower than the average failure stress of the two speci-

menso On the other hand, the first multiple fracture is predicted (E Z = ]) to

occur at 300 ksi while the theory of Reference 3 predicts a failure stress of

428 ksi.

used.

In the last two cases Friedman's definition of ineffective length was

(20)
Grinius also ran tests on boron fibers in an epoxy matrix. These

specimens were 2. 5 inches long and contained 25 fibers. The Weibull para-

meters for the fibers were found to be

1

= ll.ll, c_ _ = 433.

Unfortunately only one undamaged specimen was tested. This specimen

failed at 304 ksi fiber stress. The expected value of stress for the first frac-

ture is ?96 ksi while the first multiple fracture is predicted at 330 ksi and the

failure stress predicted by the theory of Reference 3is 340 ksi. It should be

noted that to obtain the last two values, the definition of the ineffective length

presented in Reference 3 was used.

From the experimental observation of the absence of cumulative fractures

and the good correlation between the observed failure stress levels and

those predicted for the first fiber break a good case can be made for the

hypothesis that composites exhibiting this type of failure are only as strong
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in tension as their weakest fiber. If this is also the case for the three dimen-

sional composites, the matrix must be designed so that it will prevent this type

of failure from occurring. This can possibly be accomplished by using a ductile

matrix or by allowing the matrix to partially debond from a broken fiber.

Conclusions

A statistical model including the effects of stress concentrations for planar

arrays of fibers in a matrix has been presented which provides a good descrip-

tion of composite behavior up to the failure load. The stress level for which the

first multiple fracture is expected to occur has been proposed as a predicted fail-

ure stress.

The model predicts that the composite itself is a "brittle" material in that

its strength decreases as the length or width of the specimen increases. This is

illustrated in Figure 17 where the variation of E Z with length is presented for the

composite system used in test series B of Reference 4. This is in contrast with

the theory in that paper which predicts a composite strength that is independent

of length for large values of M.

Finally, it has been shown that the failure stress level in tests of three com-

posites that did not exhibit cumulative damage occurred at about the expected value

of stress at which the first fracture was predicted. This failure stress is lower

than that for a bundle of fibers of the same length and number indicating that the

matrix may have a detrimental effect in composites exhibiting this type of failure.

The present study demonstrates that the understanding of composite be-

havior is a continually evolving process and that even in the case of such a simple
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loading condition as pure tension the failure mechanisms are not completely

understood. More work must be done, for example, to explain the apparent

difference in failure modes observed in glass and boron fibers, and to extend

the analysis of stress concentration effects to three-dimensional composites.
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The Steady-State Viscoelastic Response

A systematic study of viscoelastic behavior of fiber-reinforced compo-

sites was initiated by Hashin (Ref. 21}.

theoretical and practical points of view.

Such analyses are motivated by both

Fibrous composites consisting of

linear viscoelastic phases are a natural extension of the linear elastic model

in which phase materials are assumed to be Hookean Solids. On the other hand,

phase materials in composites do exhibit very strong time dependent properties

especially in a high temperature environment. A basic understanding of the

viscoelastic behavior of composites is important before such materials are

utilized in practical applications°

Hashin (Ref. 21) related the effective viscoelastic properties of a compo-

site which is composed of linear viscoelastic phases to those of its constituents

by a correspondence principle. This same model used by Hashin is used to

study the steady state response to some simple types of sinusoidal surface

tractions or surface displacements. It should be noted that in Hasin's approach

to viscoelastic theory of composites, inertia forces are neglected so that only

quasi-static motion is treated. The present study is based on Hashin's work

(Ref. 21) and the same assumption is implicit so that wave propagation phenome-

na will not be considered here.

Following Reference 21, the general macroscopic viscoelastic behavior of

a composite can be described by the following constitutive equations:

t .:, d _ (T) (1)

_j(t) = _ Gijk_ " (t-T) k_-
dT

O
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or

D

t ,:.- d(_k4 (7) dT

_ij (t) = _ Jijk4, (t-r) d7 (2)

o

where (}ij(t)and _ij(t) are, respectively, the average stress and strainaverage

in the composite at time t; Gijk4(t ) and JijkC(t) are the effective relaxation

modu!i and offortiva rraaD comDli_nce,_, respectively.

By the symmetry of the average stress and average strain tensors, the

following symmetry relations hold:

Gjik_ " (t)= G ijk£(t) = G_jck(t)

for t _> 0 (3)

J:'_ik _(t) = Jijk_ (t) : Jij_k (t)

In order to establish the correspondence principle between viscoelasticity

and elasticity, it is assumed in Reference 21

Gijk4 (t) = Gk4ij(t)

and for t _>0 (4)

J:_"jk4(t) = Jk4ij(t)

which are the Onsager Reciprocal Relations (Ref. 22)

The one-sided Laplace transform of (1) and (2) gives

._. /%.,. A

(}ij(P) = p Giikg " (p) ekg(p) (5)
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_"(P)M = p JiJ kL(p) (_kL(p) (6)

where p is the transform variable and the circumflex " /" " above a function

denotes its Laplace Transform which is assumed to exist. Because of the

formal resemblance of (5) and (6) to the generalized Hooke's Law in elasticity,

GijkC(p)"":and PJijk_,(p)'' are termed transform domain (TD)effective moduli andP

compliances, respectively.

Now for unidirectional fiber-reinforced composites, transverse isotropy

will be considered (Ref. 21, ll).Consequently, only five effective relaxation moduli

(or five effective creep compliances) are independent so that (5) and (6) can be

much simplified. For example, (5) can be written down in terms of the following

five independent TD effective relaxationmoduli:

P K z 3(P) --

/x .,.

GZ 3(p) --

P G 1 (P) --

P

P C l I(P) --

VAA bAl_.- Ut.AA_a. AAC_AA_,

of the corresponding TD effective relaxation moduli.

the plane strainTD effective bulk modulus;

the TD effective transverse shear modulus;

the TD effective in-plane shear modulus;

the TD effective Young's modulus;

to be associated with uniaxial stress in fiber direction

with transverse deformation prevented by a rigid

enclosure.

the TD effective creep c_mpliances are the reciprocals

For example
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A _:_ 1

P kz 3 (p) = A ..:..

P KZ 3 (p)

etc..

P g2 3 (p) = 1
A .,.

P GZ3 (P)

After the effective characteristic functions (relaxation moduli and creep

compliances) are defined, Hashin(Ref.gl) used a correspondence principle to relate

the effective viscoelastic characteristic functions to the effective elastic moduli

of a duplicate composite body with elastic phases.

On the other hand, the effective elastic moduli of unidirectional fiber-

reinforced composites have been obtained by Hashin and Rosen(Ref. ll}. Closed-form

expressions for four effective elastic moduli and bounds for the fifth are ob-

tained for the "random array" geometry. In applying the corresponding prin-

ciple, I-lashin (Ref. 21) used these expressions and went through a replacement

scheme to obtain the Laplace Transforms of the corresponding effective visco-

elastic characteristic functions. Therefore, the entire problem of finding the

quasi-static viscoelastic response reduces to Laplace Transform inversion

which is not always easy. However, for cases where inversion is formidable,

Abel-Tauber theorems can be used to draw important conclusions on the be-

havior of the effective moduli and compliances without the operation of inversion.

Refs. Zl andll are reierred for details.

Now, for a unidirectional fiber-reinforced composite body under special
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boundary displacement or traction conditions (Ref. 21), (i) and (2) can be reduced to

t ;:. d _ (T) dT(t) = G (t-r) dr (v)

0

t

_(t) = I J*(t-r) dd_.(_ (T) d_" (8)

0

where _(t) (_ (t)) is a component of the stress (strain)tensor _ij (t) (_ij(t))

*( 1whereas G (t) J*(t) represents one of the five effective relaxation moduli

(effective creep compliances) of physical importance as defined previously.

Henceforth, (7) (or (8) ) will be used as the representative average stress-strain

relation that defines a particular viscoelastic characteristic function.

In the course of obtaining the steady-state response by making use specifi-

cally of the results ofRef. 21, we shall first develop certain relationships and

investigate their validity. Then the general results will be applied specifically

to the unidirectional fiber-reinforced composite to obtain explicit expressions

which characterize the response. Since we are interested in steady-state re-

sponse to sinusoidal input, we can assume that the input has been applied on the

body for an indefinitely long time and that all initial disturbances have died out.

Under this circumstance, it is convenient to put the beginning of motion at

time -_(Ref. 23). Hence (7) and (8) are modified to the following forms:

t

6(t) = _ G*(t-r) d_ (r) d,dT (9)
d
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and

t
* d_ (r) dr

(t) = I J (t-r) dr
--CO

(lO)

By changing the integration variable from rto _ where t - 7= _,

(i0) become, respectively,

co

i
O

(9) and

I1 1%

oo

(t) : _ J* (_) 0 ' (t-_) d_

o

(lZ)

where prime denotes differentiation with respect to the argument of the function.

Using complex representation for sinusoidal oscillation, we put

i0Jt
(t) : ¢ e (13)

o

where ¢ is in general a complex number and co_
o

frequency of the oscillation.

Substituting (13) into (II)we obtain

a real number, is the angular

ic0t _4-,:
5 (t) = i_O_ e G'(_) (14)

o

where

" :'- _ -ia_
G"(c0 ) G'::(_) e d_ (15)

o
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is the one-sided Fourier Transform of G (t)if it exists.

icot
Let'(t) = (Y e , where a

o o
is in general a complex number, then by (14),

6(t) _ % = i co G"(CO) M

(t) c
o

(16)

"'M* is called the effective complex modulus associated with G (t).where

Equation (16) can also be written as

_(t) = IM':i _ e i(cot+ 6)
0

- M ':"where 6 = tan 1 Im[ ]

Re [M*]

(17)

which reveals the fact that _ (t) is not in phase with _ (t) .

Similarly, if 6 (t) = a e
o

ioJt
then (12) becomes

i_0t "-%
¢ (t) = i0J_ e J (cO)

o

where

.... f -ico Cd
J"(_) = J* (_) e

o

(18)

(19)

is the one-sided Fourier Transform of J;:"(t) if it exists.

ioJt
Let _(t) = ¢ e then by (18),

O

(t) %

6 (t) ao

1
= ico J*(co) -

M

(20)
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or

1 i (c_t - 6)
(t) = iM*l e (21)

which again shows that _ (t) lags behind _ (t) with a phase lag g.

From both (16) and (Z0), it follows that

- co G (a) j"(_) = 1

if both G'"(oo) and j"(w) exist•

The physical significance of Im[ M*] and Re _M*] is now discussed•

First of all, it can be shown that the rate of work done by surface traction at time t

on a body can be expressed in terms of an integral over the entire body as follows:

T. u.d S = ._ a. _o d V

S I I V 13 10

where S denotes the boundary surface and V, the volume of the body. The above

equality is valid only under the assumption of quasi-static motion.

Furthermore, under special boundary conditions on the boundary surface

S (displacement boundary condition u.(S) = e..(t) x. or traction boundary condition
1 13 O

T.(S) = _..(t) n.,(Ref. 21)), it is easy to show that:
1 mj j

i •_j (x, t)_ij (x, t) d V = crij(t) ¢ij

V

(t) v

Therefore, the total work done from time t
1 to time tZ is:

t2 t2

r rr q (

) L)TiGidSJdt=V1
tl S t 1

(}..(t) e .. {t) dt
1J 1J
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If t
2

-t
l is the period of motion, then

t2 (t) ¢..(t) dt (22)

W = V I _ij D

t 1

denotes the total work done on the system in a cycle. According to the First

Law of Thermodynamics, for isothermal steady state deformation, W is the

total energy dissipated and transferred to the surroundings in the form of heat

in a cycle. Under the special boundary conditions by which (7) and (8) are ob-

tained, W in (22) can be reduced to the following simple form:

t2

(W = VF _ (t) _ (t) dt

)
t

1

(Z3)

where the factor F is either 1 or 2 depending on the boundary condition.

iwt iw t
Therefore, if _ (t) = Re L s e jand (_(t) = R _M":"¢ e ] , then

o e o
for

a cycle with angular frequency of motion a_, after some manipulation, (23)

be come s 27"/

f a_ . 2 *W = VF _ ¢ dt = 17 _ Im E M _ VF (¢
O o

T

is assumed

to be real without loss of generality ) where I" is any time during the motion.

This gives the amount of energy dissipated in a cycle•

Furthermore,

2

o VF2

it can be shown that a fraction of the amount of energy

is twice in every cycle alternately stored and ..... d '-
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.e.

the system. Therefore, Im _M"] is related to the energy dissipated while

Re EM_]is related to the energy stored.

From the above results, it is clear that in the steady state, the

responding average stress (or average strain) will vary sinusoidally with the

same angular frequency uJ as that of the input average strain (or average stress)

with a phase difference 6 which is a function of _. Moreover, the amplitude

ratio %
e
o

is also a function of 0O only.

According to (16) and (Z0), the knowledge of M _:'_hinges on the knowledge

"- :',_ 4,. _ _.,.

of G (w) or J"(W) . However, G"(_) and J_:_(_) are formally related

to the Laplace Transforms G"(p) andJ'(p) by the following relations:

and
G" (uJ) = G:"(im ) (24)

= J (i ¢) (25)

Therefore, if expressions for G (p) and J (p) are known, G (_) and J (_c)

can be obtained immediately by the replacement of variable p in G"'(p) and

/%,,

J" (p) by i_. However, there still exists the problem of convergence --

given a function of time t, the existence of its Laplace Transform does not im-

ply the existence of its Fourier Transform. Thus, given a Laplace Transform

of a viscoelastic characteristic function, it is necessary to examine the location

of its singularities in a complex plane of complex variable p. According to the

definitions of the one-sided Laplace and Fourier Transforms, it is observed

that if the singularities of the Laplace Transform are all located in a region to
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the left of imaginary axis of the complex plane, then the corresponding Fourier

Transform exists.

I-Iashin (Ref. 21) has obtained closed-form expressions for some effective

relaxation moduli and creep compliances for the "random array" model. Then,

by making use of (24) and (25), the corresponding effective complex moduli can

be obtained in a straight-forward manner. For example, for elastic fibers

embedded in a viscoelastic matrix, the effective relaxation moduli KZ3 (t)

characterizing the plane strain dilatation has the following form in the Laplace

Transform domain:

"-:-" 1 Ip K23{P). = [km {p) + _Frn{P) ] + vf Kf

1 V m

+1 1

+ _ Gf - kin(p) - -5 Fro(P) km(P) +3 Frn(P}

-i

where k (p) , Fm(P} are matrix TD moduli; Kf and Gf are fiber elastic bulkm

and shear moduli; vf and Vm are the fiber and matrix volume fractions, respec-

tively. All these quantities are considered known if the composite body is

given. Then according to (24), formally we have:

_:-" 1

icoK23(°_)--[km(iC°)+-_ rm(i_) ]+vf I Kf

1

1 1

+ -_ Gf-km(iCo) - -5 Frn(ia°)

v
m

4

km(i¢o) + 4 Fm (ira)

%.

and the complex moduli associated with K
23

J

M23'1"= i°_K23 (¢0)

(t) is, according to (16) ,

Furthermore, it follows from Ref. 21 that for rigid fibers,

K23_:" (00)= Km(00) + Gm_ (_)+ EKm(O0)+ -54 Gm(e) I (1 - v f )
3
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where Km(_0 ) and Gm(_ ) are the one-sided Fourier Transforms of the matrix

bulk and shear relaxation moduli, respectively. On the other hand, if fibers

are rigid and the matrix is elastic in dilatation and Maxwellian in shear,

Hashin(Ref. 21)has obtained simple expression for the effective creep compliance

k23(t ) of which the one-sided Fourier Transform does not exist. Similarly,

other steady-state responses such as in-plane shear, etc. can be obtained in a

straight-forward manner.

It is emphasized here that the method developed here is also valid for

other models than the composite-cylinder-assemblage model used inEef. 21; lh(

latter is only a case in which bounds of some of the characteristic functions in

transform domain coincide to yield closed-form expressions. If other ex-

LI ....... -1_

pressions can be oota±n_u.... by uL,_, 11_uu_Is, th_......_v_1_u_,_,,_ _._ ...._ ....._-

plex moduli can be obtained by the replacement scheme defined by (24) and (25).

On the other hand, vibration experiments can be performed on composites to

determine experimentally their respective effective complex moduli from

which information on their corresponding effective viscoelastic characteristic

functions can be obtained through Fourier transformations.
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Evaluation of Transverse Effectiveness Factors for Use in Elastic Analysis_

of Three Dimensional Filamentary Composites

The method of analysis developed in Reference 1 for the elastic constants

of composites having filamentary reinforcements at various angles to the three

principal orthogonalaxes of the material employed factors /_e_pOS_ /'_.,,

etc. to define the transverse effectiveness of the filaments for resisting stretching,

shearing, etc. For simplicity the assumption was made that the transverse

effectivenesses were the same for all strains due to stretching_ regardless of

whether the strains were induced by Poisson's ratio effects, or were simply

those in the direction of an applied extension. (Different values of transverse

effectivenesses in shear from those in stretching were, however, allowed for.)

Thi_ a_pruxlnaation led to generally satisfactory results for stiffnesses, with

the possible exception of E L , that is the stiffness along the filaments, for uni-

directional reinforcement - a somewhat disturbing exception in view of the

simplicity of calculation of this stfffness by the rule of mixtures. Even more

disturbing was the fact that the values of Poisson's ratios calculated with this

simplifying assumption of equal transverse effectiveness factors were not con-

sistent with those found by other methods of calculation.

Guidelines for the extension of the analysis of Reference 1 to provide for

various values of /_ for direct and Poisson strains were included with the

analysis, but within the time available no evaluation could be made to determine

whether or not the extension would be justified. A brief series of calculations

has now been made to evaluate the differences among the various transverse

effectivenesses for the extended analysis. The results are shown in Figure 18,
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and the equations relating thereto are reproduced as Tables 1 to 3.

PeL Pe pO andpe are plotted asIn Figure 19,curves of ' T ' LT ' G

derived from the upper limit values of the elastic constants of Reference II for

a typical glass/epoxy combination employing the assumption that

_-e L--/_-e; _-eLT =_e_ I: _ . As can be seen, differences among _e T,

/_o._ , and /_m.. are found, of increasing relative magnitude with in-
r Lr r

creasing volume fraction of binder (the abscissa on the Figure). Also pe 4

differs from the value unity; this is the variation which is to be anticipated

from the previously noted inconsistent calculation of E L for uni-directional

reinforcement with the simplified transverse effectiveness assumption. The

differences in the various /_ - values shown are, of course, just those consistent

...'_-I.._.^ ^I-_-.: ..... 4--_.-,+o aS f_u '_rl ¢_',-,m Rpf_'rpnrpll The use of the _._t of

Tables 2 and 3 thus reproduce properly all the elastic cotlstants

of a unidirectional reinforcement configuration, and hence provide a

self-consistent basis from which the effects of :uulti-angular reinforcement

may be determined via extensions to equations like those of Reference 1.

These extensions have been made and the general equations for the compliances

incorporating the various p_ are presented in Table 4.

As presently written, the equations of Tables Z, 3, and 4 conceal some

internal inter-relationships among the various expressions. For example, the

trigonometric expressions of Table 4 are for convenience written in terms of

W _ -_ fl "_¢h_c_"_'e reinf°rcing filaments makethe three angles , , a_ ,-,. .......

with the composite orthogonal axes of symmetry (i, 2, and 3). Only two
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angles are needed, however, to define the filamentary directions;

and ._ are related by the well known formula

COSZ + C06,E + ¢05a fL = I (1)

Similarly, for convenience six transverse effectivenesses have been

PeL Pe _Pe__ 7" _ 7" _ _ /_e___ _e - see tables I' 2' and 3)'

defined (

where only five _sj are needed for consistency with the five elastic constants

used in evaluating the transverse effectivenesses. Accordingly the equations

of Table 3 may be combined, as for example to yield the relation

(2)

where tJf = the Poisson's ratio of the filamentary material.

Thus simplifications of the equations as given in Table 4 are undoubtedly

possible by the employment of the trigonometric expressions, and _ values

which lead to the least complex algebra.
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DESIGN CONCEPTS

Study of Composite Structures

Efficient application of composite materials to aerospace structures

requires proper selection of reinforcement pattern and material as well as

overall structural arrangement. To a large degree guidelines for optimum

design of such composite structures have been lacking, nor have they been ob-

vious a priori to the designer.

Some clues about possible directions toward efficient configuration have

recently become available. Reference Z4 explored effects of material and rein-

forcement pattern on the structural efficiency of boost vehicle shells. Reference

2 investigated similar effects for a number of aircraft structural elements.

While these studies revealed a number of specific factors of importance for

__y_-_ ...... w_ _-r°-__l_f_nn.......r_f _r_rn_o._ites.__ three _eneral conclusions also evolved

which served as a basis for the studies to be reported here. These conclusions

were:

I. For a wide range of shell type applications the isotropic (0°, ±60 °)

reinforcement configuration is most efficient.

2. The high (multi-directional) stlffness-to-density ratio of beryllium

makes it more efficient than most near-future composites for many

shell and plate type structures, - particularly if the load intensities

encountered are low, or if stiffness requirements are important.

3. Filamentary composites appear most attractive when used as

unidirectionaily .... ed ele ..... to _a"ry ,,,_r_'_rt_nn_l loads.relnlurc _:_L= _ ................
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The further question that seems to arise from these conclusions is

whether some combination of the biaxial properties of beryllium (or isotropic

composite) with the uniaxial properties of one-directional filamentary rein-

forcement may possibly be the best configuration of all.

Circular Tube-Columns

To explore this possibility on an orderly basis, a simple round-tube

column was selected as a first model for study. This model was chosen for

simplicity; for an isotropic material optimization of the thin-walled tube in

compression has perhaps achieved the status of being a classic example of

balancing proportions between local buckling and column bending to achieve

minimum weight. Thus its use to explore effects of combinations of unidirectional

............ _ ...... :^-_1 rties is uncomplicated by rnmpl_xit_e._ of the optimiza-ciltU llltlitiuli _t_iuli_i propc

tion procedure itself.

Accordingly beginning with the model of Reference 25, modifications were

assumed of increasing complexity, arid the effects on efficiency evaluated. As

a first step, unidirectionally reinforced composite stiffeners were assumed added

to the tube at three equally spaced points around the circumference. These

stiffeners were assumed to contribute nothing to the local stability,- or instability_-

of the tube walls, but were assumed to add effective areas for column bending

so that the effective radius of gyration of the tube is given by the expression
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whe r e

CGyr)Eff

t

R

radius of gyration of stiffened tube

outside radius of tube

t

E B

O

V
B

V

O

thickness of tube

Young's modulus of unidirectional (boron) composite

loung s uluuulus o£ tube ........:_i

volume fraction of composite stiffeners

volume fraction of tube material (v B + Vo = l)

With equation (1) incorporated into the procedure of Reference 25, the

efficiencies of the reinforced tubes were calculated from the formulas that

follow ,- . -- _%

.a,.A (
(2)
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whe r e

P

L

W

axial load

column length

overall weight

density of stiffening material

density of tube material

refer to the secant and tangent moduli of theand the subscripts Sec and Tan

tube material, respectively.

As indicated in the formulas, the reduced moduli used for plastic buckling

were the tangent modulus for column bending, and the secant modulus for local

buckling. The use of the tangent modulus for column bending is well founded.

The use of the secant modulus for local buckling is used here as slightly more

optimistic than the root mean square of the tangent and secant moduli as pro-

posed in Reference 26. Thus the efficiency curves resulting are perhaps slightly

too high in the plastic region, representing a kind of upper bound. (Most

affected are the curves for beryllium which should be accordingly somewhat

discounted at the upper end.) In any event the use of this possibly optimistic

reduced buckling modulus changes none of the conclusions drawn from the

re sults.

Results of the calculations are given in Figures 19 to 24. In Figure 19 are

given basic results for unstiffened aluminum-alloy and beryllium circular-tube

columns. Here the beryllium tubing is found to vary from 25% of the weight of

the aluminum-alioytubing inthe elastic range __0_ _dl IO°_l'J_
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to 80%of the aluminum-alloyweight athigh stresses (__6 _ C_p&l'3)_

The addition of the boron/epoxy three-point reinforcement permits the

aluminum-alloy tubing to be made substantially lighter both at high and low

loadings (Fig. Z0). In the elastic stress range there is apparently an optimum

reinforcement ratio f_'_ _ 0o66_) beyond whichhigher percentages of

reinforcement do not further increase the efficiency. At the high stresses,

however, the very great strengtl_ and stiffness of the unidirectional reinforced

composite provide increases in efficiency up to the maximum reinforcement

ratio considered f _8 _ _)/vo
The beryllium round tubing is not improved by the boron composite rein-

forcement at low stresses; rather the efficiency is decreased as the reinforce-

ment ratio increaseso This trend is just barely reversed, as might be expected,

at high loadings (see Fig. gl).

Comparisons between Figures Z0 and _.1 reveal that at low loadings the

unreinforced beryllium is always the lightest of the combinations considered,

being approximately one-third the weight of the best boron/epoxy-aluminum.

At the high stresses on the other hand the reinforced aluminum is better than

any beryllium tube, being about one-half the weight of the beryllium construc-

tion at the maximum loading considered. Thus it appears that the low propor-

tional limit strain of the beryllium together with the flat top to the beryllium

stress-strain curve beyond the proportional limit prevents it from acting

effectiveIy in conjunction with high-strength uni-directional reinforcement.

In this range a better combination of materials is an isotropic boron/epoxy
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configuration for the tube walls. This configuration should still be elastic at

of P/L 2 covered in Figures 19 - 21, and at the maximum values ofthe values

P/L 2 considered the isotropic boron/epoxy tube is calculated from eq_'ations

(1) and (2) to weigh very nearly one-half as much as the best reinforced

aluminum tube.
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Scalloped Tube Columns

One of the pitfalls of efficiency studies like the foregoing is the possibility

that a poor geometrical shape has been chosen, and as a r(sult misleading con-

clusions are derived about the effects of various materials of construction.

Ideally an optimum shape should be used (if need be the optimum for each

material combination) so that shape effects may be divorced from material

effects in the evaluations of the calculations.

In order to assess the shape effect, the efficiencies of scalloped tubes

were also investigated. First, a three-lobed scalloped round shape was used

(Figure 2Z). The objectives of the scalloped shape are enhanced local buckling

resistance due to decreased radius of curvature of the tube wall together with

increased ' - _---_:-~ " _ .... because _he scallooed tube approximatesCOIU.IIIII IJ_::IlUtlI_ FCSIS ...... .

an equilateral triangle, and the equilateral triangle has a 21% greater cross-

sectional moment of inertia for the same area than a circle. Because the

scalloped round tube does not substantially enhance the moment of inertia,

however, it was abandoned in favor of a scalloped triangular tube. The charac-

teristics of these two shapes are summarized in Figure ZZ.

In Figure 22 are plotted the percentage increases from a simple thin-walled

round tube section attained by scalloped-round and scalloped-triangle sections

having the same cross-sectional area and radius of curvature-to-thickness

ratios as the reference round tube. As indicated by the curves of the Figure,

the "scalloped triangle" has substantially greater potential for _,,,_.._'_'"_'_'...E, _h_....

column strength (at a constant R/t so that in first approximation the local
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buckling strength is constant) than the "scalloped circle." Furthermore, the

apexes of the triangular shape provide a greater radius of gyration for added

stiffening as in the form of concentrated boron/epoxy elements than the crests

of the scallops of the "scalloped circle."

While clearly the extreme limit of 21% increase in section properties

represented by the "infinitely scalloped" triangle f_0) of Figure 4 surely

cannot be attained, the development of a reasonable fraction of that amount may

be anticipated for "reasonable" proportions. Here "reasonable" is taken to

mean that the cusps between scallops are of sufficient depth to establish stable

corners not prone to local buckling at the stresses encountered by the tubes.

The assumption was made that the proportions so labelled on Figure 22 are

reasonable, and likely performance gains through their use for reinforced com-

posite columns was calculated with the results given in Figures 23 and Z4. For

these calculations, equation (Z) was replaced by

(3)

where

moment of inertia of scalloped triangle section

72



r"

area of triangle section (equal to area of circular

section of equivalent R/t )

inside radius of scallops

__ equivalent thickness-radius ratio of tube

In Figures Z3 a_d Z4 comparisons of the efficiencies of the reinforced

scalloped triangle tubes with envelope curves representing the iightesL r_inforced

round tubes (the dotted curves on Figures 23 and 24_ derived from Figures Z0 and 21)

show the expected gains for the triangular shape. With the triangular shape

higher reinforcement ratios for the aluminum alloy tubing are effective (Fig. 23)

va
and a reinforcement ratio _ = 4 produces a tube column competitive with

vo
beryllium even in the elastic range (see Fig. 21). Further, the boron/epoxy re-

inforcement of beryllium in the plastic range is more effective with the scalloped-

triangle shape. The general trends established in the studies of the reinforced-

round tube columns, however, are not changed by the more efficient triangle

shape. Thus the scalloped-triangle beryllium tube is the most efficient of all at

low loadings and the reinforced aluminum-alloy becomes more efficient when the

stresses would cause yielding of the beryllium.

The gains in efficiency shown on Figures Z3 and 24 for the scalloped-triangle

shape appear great enough so that experiments to determine their validity appear

desirable. That is, experimental definition is needed of the stability of a

scalloped-wall tube to establish the degree of scalloping beyond which corners

of cusps will no longer remain fixed as straight lines along the tube to provide

edges as restraints against local buckling distortions.
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Plate Efficiencies

The efficiencies of composite materials for plate applications, already

investigated for a variety of material combinations in Reference 25, have

exhibited similar characteristics to those already discussed above for tube-

columns. Indeed combinations of beryllium and 0° boron/epoxy plates made

11n____........._ndwiches with the beryllium, as the faces and the 0 ° boron/epoxy as

the core demonstrate rather clearly the problems encountered in the develop-

ment of combination metal composite structures, as is shown in Figure ZS.

In Figure are plotted the results of calculations (made as in Reference

25) of the efficiencies of sandwich plates which have 0 ° reinforced boron/epoxy

cores and faces of beryllium, isotropic boron/epoxy, and (at the very top end of

the curve) no faces at all. The solid curve represents the beryllium-faced

up to the discontinuity (at _-'_4,5 _ C_,_ kit" 1 ) the platessandwiches;
_8

are totally elastic (to achieve this elasticity at such high values of Nx a corn-
--K-

pressive pre-stress is assumed in the boron/epoxy core just sufficient to stress

the faces to the proportional limit in tension at zero external load). The rapid

increase in weight of sandwich above the discontinuity arises from the continuing

decrease in stiffness of the beryllium faces as they are stressed further and

further beyond their proportional limit. The dotted curve represents the higher

efficiency that would be attained with beryllium with a higher elastic limit (or

pre-stress). Inasmuch as neither of these improvements in the beryllium

response appear possible of attainment in practice, the solid curve is the

realistic one for the sandwich, and, as indicated, it can be surpassed in
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efficiency- as by sandwiches utilizing isotropic boron/epoxy faces at the higher

load intensities. Indeed as the loads become high enough, only the 0 ° boron/

epoxy retains enough stiffness to be effective, and no faces at all become most

efficient.

To a degree, the curves of FigureZ5 may be considered to depict in

general the various characteristics which must be balanced in composite plate

construction for maximum efficiency, as follows:

(1) 0° reinforced material should be used as the strength element,

if possible pre-stressed to provide the maximum possible

elastic range to the material used to provide transverse

stiffness or plate buckling resistance.

(2) The material used to provide the plate buckling resistance

(the face material in a sandwich) should be selected on the

basis of the stresses to be carried, - at low stresses beryl-

lium is most attractive, at higher stresses composite con-

figurations approaching closer and closer to the 0 ° config-

uration should be used.

(3) While the example shown (Figure 25}is for a solid sandwich,

so that the average stress is simply.._-- __)_ , the

same rules as (i) and (2) apply for hollowed out constructions

which raise the average stress to Nx where %- is the aver-

I

age thickness and %- _ t. Thus, in general, any __11_u1_u_,,_

out (light weight core sandwich construction, etc.) which
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does not introduce new instabilities or failure modes is

like an increase in the structural index value on Figure Z5,

- i.e. , it tends to make optimum constructions utilizing

higher percentages of 0° reinforcement and lower

percentages of beryllium.
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Panel Efficiencie s

The plate efficiencies just discussed were considered on the basis of

initial buckling stresses only. Particularly at low stresses, as is well known,

plates of most materials can continue to carry compression load without failing

at stresses substantially above the initial buckling stress.

For plate assemblies incorporating 0 ° reinforced composites as stiffeners,

initial buckling of the plates may be expected to cause the major part of any

subsequent load increase to be borne by these stiffeners. This load transfer

into the 0 ° reinforcement is precisely the mechanism noted desirable above for

increased structural efficiency. Accordingly, for example, compression

panels incorporating 0° reinforced stiffeners should be expected to achieve

high structural efficiencies.

High structural efficiencies were indeed found for 0° boron/epoxy Z-section

stiffeners on +45 ° reinforced boron/epoxy skin in Reference Z. Part of this

high efficiency arose from the high shear stiffness of the skin material

(allowing the use of thin skins and hence allowing most of the material to be

incorporated in the stiffeners.)

Reviews of the propertles of ±45 ° boron/epoxy and comparisons with the

O

properties of beryllium suggest that replacement of the ±45 boron/epoxy skin

on the panels of Reference 2 with beryllium should result in even highereffi-

ciencies than those calculated therein. For example, pertinent properties of

these two materials are compared in the following table:
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± 45°B/Epoxy Be

Density Mg 2.19 1.86
m 3

(pci) (0. 079) (0. 067)

MN
Yield Stress --

m Z 138 400

(ksi) (20) (58)

GN

m 2
Shear Modulus 7Z. 5 145

(I0,500) (Z 1,000)

Young' s Modulus GN 25.5 304

2 (3700) (44, 000)
m

(ksi)

Yield Strain 0. 0054 0. 0013

Thus, except for its low yield strain, beryllium appears vastly superior to the

o
+45 B/Epoxy. The low yield strain, however, raises uncertainties, and a

detailed evaluation is required to determine whether the beryllium/composite

panels are as superior as would at first appear.

Such an evaluation was made as a part of the study of Reference 27. The

results are reproduced here and extended to make possible direct comparisons

of the efficiencies of the ±45 ° B/Epoxy and beryllium-skin Z-panel constructions.

These comparisons are presented in Figure Z6.

Figure 26 plots curves of weights of box-beam compression covers (plus

supporting ribsl for optimized Z-stiffened panels. Optimization includes the

selection of rib spacing and stiffener size and spacing for minimum weight to

carry a de :- '---_'--_i_li U_llUlli_ moil'lent _'f ....4+I_ ................ a box beam or _,;,_a*h _ and depth d.

Further the skin thickness is required to be adequate, in terms of the box depth,
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to provide a specified torsional stlffness; - accordingly the beryllium and

+45 ° B/Epoxy are compared at "equivalent"

such that

values of skin thickness t

SEq

The curves of Figure Z6 show substantial weight savings for the beryllium

0 °skin on B/Epoxy stiffeners. These weight savings are depicted by the cross-

hatching between the curves for the +45 ° B/Epoxy-skin panels (the dashed

curves) and the beryllium-skin panels (the solid curves) at the equivalent tor-

sional stiffness measures (equal values of _/_.^ ).

.-y
Several factors accumulate to produce the weight savings shown in Figure

Z6 for the beryllium-skin composite construction: (1) the favorable shear stiffness

of the beryllium permits an even higher percent of stringer material-with its

high-strength, high column-bending stiffness characteristics, - than for the

145 ° Boron/Epoxy skin; (Z) the beryllium is of lower density than the boron/

epoxy; (3) the high strength of the 0 ° reinforcement (as noted in the opening dis-

cussion for this section) permits it to carry the load long after initial buckling

of the beryllium skin.
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Studies of Composite Materials

Three-Dimensionally Isotropic Materials

The form of the matrix of elastic constants relating stress to strain in a

generalized Hooke's law has been studied for various conditions of structural

symmetry. For two dimensions, it is known that a material is isotropic in a

plane for which there exists a normal axis of at least six-fold symmetry. Thus,

_........._ p_-_r,_=l__. .....---_-*_'*'_,1= a fibrous corr, posite plaie is effectively isotropic in

th
its plane when one n of the fibers are oriented every -- radians for n >= 3.

n

(By effectively isotropic, it is meant that the average stress, average strain

relations are isotropic.). Similar conditions to obtain three dimensional iso-

tropy appear to be unavailable in the literature. Several configurations having

multiple symmetry conditions which might yield at least an approximation to

an elastically isotropic material have been studied. The first material treated

has two three-fold axes of symmetry separated by the angle for which the cosine

is -1/3. Such a material can be obtained with a fibrous composite having one

fourth of the fibers oriented in each of the four directions defined by the altitudes

of a regular tetrahedron.

The stress-strain relations for a general elastic body may be written as:

I". = c.. c i, j = I, Z...6 (I)
i ij j

where T. are the stress components
1

C are the strain components
J

c.. are the 21 independent elastic constants (c.. = c..)
1j j1 1j
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We treat a material having two axes of three-fold symmetry at an angle @

such that

1
COS O = --

3

As a consequence of this, there must exist two additional axes of three-fold

symmetry; the four axes being oriented along the directions of the four alti-

tudes of a regular tetrahedron.

We select the vertices of the tetrahedron at the points: ( 0,

-T )' ( 2

(This four-legged array is called a caltrop.)

o. T ),

l l l

4T(- 2/'_ 2' 4 )"

This is a tetrahedron with centroid at the origin. This body has elastic symme-

2_
try with respect to a rotation of _ about the z axis. Thus for the following

transformation of coordinates, the stress-strain relations remain unchanged:

x y z

x' cos @ sin @ 0

y' -sin@ cos @ 0

z' 0 0 I

This reduces the elastic constant matrix to the following form (Ref. 28)

C..

13

m

c 0
Cll c12 c13 Cl4 15

-c _Cl 0c12 Cll c13 14 5

c13

CIA -C14 0 C44 0

15 -c15 0 0 c44

0 0 -c15 c14

Cl3 c33 0 0 0

-c!5

Cl4lT(Cll-Clz)

(z)
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This array has seven independent constants.

The stress-strain relations will also be invarient for a rotation about

one of the other axes of three-fold rotational symmetry. In particular, we

consider a 1Z0 ° (counter-clockwise) rotation about the axis passing through

-'5- -'T- followed by a 120 ° (clockwise) rotation aboutthe point

/,

the axis passing through the point_ r- , O, - _-d'_/] " The direction cosines

for this transformation are

X !

y'

Z w

1

3

0

0

-1

Z

2/z
3

1

3

It can be shown that the elastic constant matrix must therefore be of the

form

c°,

13

Cll Clz

C

ii

Cll+ c12"c33

Cll* c12"c33

c33

0 J'2 (c11-c33) 0

0 -Wr2 (c11-c33) 0

0 0 0

C

3 12 0 -/2 (c11-c33)_-Cll- -7 -c33

3 Cl2
0

_- Cll- ---/-- c33

This material has only three independent elastic constants and is a

material with the symmetry of the cubic crystal. Indeed, a transformation

(3)
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of the principal axes of a cubic crystal given by:

X T_

1
X r

/z
l

!

Y

1
Z T

Z T_

1

/Z 0

1 1

/5- 75

followed by a transformation of axes given by

X !

x 0

y 1

z 0

T
Z

-i 0

0 0

0 i

brings the principal axes of a cubic crystal in coincidence with the x y z axes

which are the reference axes for eqs. (5). This transforms the array of elas-

tic moduli of a cubic crystal to the following form:

C.. --

zj

1 I(C+BD-ZE ) 0 3-_ (C- D-IE)1--(C+D+ZE) -_-(C+5D-ZE)

 (c+D+zE)  (C+ZD-ZE)

i__(C+ZD+4E)
3

0

i

0 - 3---_ (C- D-ZE) 0

0 0 0

1 fl

3''--(C-D+E_ 0 _ (C-D-ZE

1

7(C-n+E)

-_-(C- D+4

(4)
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where C, D and E are the three independent elastic moduli for the cubic

system.

The array (4) has the same form as the array (3).

C = 4Cll- 3c33

D =-ql +6c +6coo
•I iZ JJ

(Cll + Clz)
E =- ÷c

and 2 33

then (3) and (4) are identical.

In fact, if we let

This shows that the material with the elastic

moduli of the form of (3) is elastically cubic.

Although this material is not isotropic, the properties for a particular

fibrous composite prove interesting, as will be shown in the following sec-

tion.

Another configuration of interest is that of Reference 1 which is construc-

ted by taking three pairs of reinforcing filaments, oriented with reference to

an orthogonal Cartesian coordinate system, xyz, as follows: one pair in

the x y plane making angles of + @ with the x axis; one pair in the yz plane

making angles of +9 with the y axis; and one pair in the zx plane making

angles of +Q with the z axis. It was shown in Reference 1 that when @is ap-

proximately 30 °, the shear modulus, Poisson's ratio, and Young's modulus

satisfy the relation:

E
G=

2(l+v)
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It can be shown that when

-l
@ = tan (Z sin 18°) _ 31° 43'

the twelve rays ( 6 lines) from the origin pass through the vertices of a

regular icosahedronwith centroid at the origin. These six lines are there-

fore axes of five-fold symmetry. The possibility that a body having six

axes of five-fold symmetryas isotropic is suggested. This result is per-

haps of academic interest only, as it does not appear possible to construct

a continuous space lattice having five-fold axes of symmetry.
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Evaluation of Moduli of Caltrop Reinforced Materials

The equations derived for the elastic constants of three-dimensionally

reinforced composites were used to compute properties of the caltropic re-

inforcement configuration. Calculations were made using both the equations

°LT
, •

= _ = _OG etc ) and the equations of Tableof Reference 1 (for which _o T

4 herein. The following material constants were employed.

Ef (Young's modulus of filaments) I0

1

E b (Young's modulus of binder) 2--]-x Ef

_f (Poisson's ratio of filaments) 0.2

12b (Poisson's ratio of binder) 0. 35

These values correspond to those for E-Glass in epoxy. Values of 8 were

found for these material constants by derivation of the upper bound Hashin-

Rosen (Ref. 2) elastic constants of unidirectional reinforcement at values of

volume fraction filament of 0.2, 0o4, 0.6, and 0.8.

Results of the calculations are given in Figure 27 for the filament orien-

tation shown. Both methods of calculation yield different compliances in the

2-and 3-directions (values of A 4 and A 6) from that in the l-direction. Differ-

ences between the two methods are not substantial, as was anticipated, nor

are the compliances found substantially at variance in the three directions.

For engineering purposes, the compliances in the three directions are pro-

bably so nearly equal that differences among them can be neglected.
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Three Phase Composite Compression Members

In the foregoing studies of the efficiency of combination metal composite

structures the efficacy of 0° reinforced composite material to provide strength

to the structure while some other material or configuration provided adequate

transverse stiffness or continuity was evaluated. On the presumption that such

0° reinforcement would truly be an extremely high compressive strength material,

these evaluations were indeed favorable. Because of the relative weakness and

lack of stiffness of available resin binder systems, however, it is not obvious

that the 0 ° configuration necessarily has the maximum compressive strength.

Rather, as this section will demonstrate,

be desirable.

Reference 4

filaments in compression.

tered:

(i)

described by the equation

where

%

(2)

some transverse reinforcement may

described the mechanics of stabilization of uni-directional

As noted there, three failure modes may be encoun-

a mode in which the shear stiffness of the binder material governs,

iTv .---

ultimate compressive stress in filament direction

shear modulus of binder

volume fraction filament

a mode in which the strength of the binder is critical, described by

the equation
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where

and

operative, described by the equation

_I'_)_ yield stress for binder

Ef Young's modulus for filament

(3) a mode in which the stiffnesses of both filaments and binder are

The lowest value of _ found from the foregoing equations is, of course, the

failure stress.

In all three modes of failure the binder properties are important. Accord-

ingly, increases in binder properties may be expected to be reflected in increases

in compressive strength of uni-directionally reinforced composites. One method

for increasing effective binder properties would appear to be to take some of the

uni-directional, load-carrying filaments and distribute them uniformly through-

out the binder. Thus, while for every failure model the value of (7c would

tend to be reduced by the reduced volume fraction of load-carrying filament

(vf in above equations), the net effect should be expected to be an increase in

due to the ir_Iproverr.ent in binder stiffnesses and strengths.

In order to assess the potential magnitude of compressive strength
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increase available by this approach, the assumption was made that the binder

properties attained by the utilization of some fraction v of the filamentary
fb

material (the original volume fraction filaments v was assumed to be 0.5
fo

throughout) for binder reinforcement would be given by simple, rule-of-mixture-

like, expressions such as

where

and

S
•_ is the Poisson's ratio found by the rule of mixtures

for filaments and binder

0 l% -. p-.,,j%
with the primes denoting the properties after binder reinforcement.

Using the foregoing equations, three possible composite combinations were

evaluated: (1) boron binder reinforcement for uni-directionally reinforced boron/

epoxy;

epoxy;

epoxy.

(2) glass binder reinforcement for uni-directionally reinforced glass/

and (3) glass binder reinforcement for uni-directionally reinforced boron/

In the first two cases the total amount of reinforcing material in the

composite was held constant, so v + vf = 0.5. In the last case vf
fb

constant and the total amount of reinforcement therefore increased as

inc rea sed.

was held

Vf, was
D
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The results of the calculations for these three combinations are plotted

in Figures 28, 29, and 30. In Figure 28, curves for the boron-boron com-

posite are presented for the following nominal constituent properties:

Ef = 414 GN (60,000 ksi)

m 2

m 2

= 2.76 GN
(400 ksi)

_ : 0. i GN (15 ksi)2
m

_= 0.2

_b: 0.35

In Figure 29 the glass-glass combination is considered for the same binder

properties and the following nominal glass properties

Ef : 72.45 GN (10,500 ksi)

m z-

_ : 2.76 GN (400 ksi)Z
m

_ = 0.2

The boron-glass combination of Figure 30 uses the same nominal properties

for each of the materials as those given above.

For properties like those of the boron/epoxy composites of Figure 28,

the conversion of a small percentage of the axial filaments into transverse
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filaments which effectively stiffen the binder should be advantageous, raising

the compressive strength from Z.75 GN (392 ksi) to 3.8 GN (550 ksi),
m2 m 2

approximately (see Figure 28). If the properties are more like those of the

glass/epoxy composites of Figure 29, however, the same gain is not to be

expected (see Figure 29). If glass is added to boron/epoxy, on the other hand,

as in Figure 30, substantial gains are to be anticipated.

Because of the gains found in the calculations for Figure 28, a series of

uni-directional boron/epoxy compression specimens having various percentages

of chopped-glass filaments added to the binder were fabricated and tested. The

results are shown as the points in Figure 31, with the large and small circles

representing nominal glass-filament lengths of 0.16 cm. (i/16 in. ) and 0.08 cm.

(1/32 in.), respectively. Despite the large scatter, strengthening appeared to

be achieved in two cases.

Both the scatter in the test data, and the sensitivity of strength of the

boron/epoxy composites of Figure Z8 to the small amounts of binder reinforce-

ment point to the critical nature of the role played by the binder in the composites

for the development of high compressive stresses. The marked difference be-

tween the curves of Figures 28 and 29 suggests that this criticality is substan-

tially greater for boron than for glass reinforcement.

To explore the sensitivity of boron composites to binder properties

somewhat further, the calculations represented by the curves of Figure 31were

• L._also made. These curves show the effects of ' - - s _ ......cn_nge in strcngths

a'b_) and binder-filament-reinforcement strengths on the compressive
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strength of the three-constituent composite when the "binder strength" mode is

critical. The compressive strength is found to depend most critically on the

binder strength at the low ratios of binder reinforcement.
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STUDIES OF MATERIALS-PROPERTIES TESTS

The testing of filamentary composites to determine their mechanical

properties has proved to be more difficult than the testing of homogeneous

materials like metals. The difficulties take several forms; they may derive

from discontinuities encountered in specimens designed to provide a diminished

cross-section, as is often done to avoid failures at points of load introduc-

tion; they may be associated with the shear weakness of the binder leading

to undesired modes of failure; or they may arise because a type of test

known to be inadequate is used for economy or other reasons. In this section

some of the aspects of mechanical-property testing of composites are

examined both analytically and experimentally to help establish guidelines for

improved technique s.

The NOL Ring Split-Dee Tensile Test

The N. O. L. ring "split-dee" tensile test, shown schematically in

Figure 3Z, has the advantages that the specimen may be readily l abricated by

winding, and the test may be performed in a conventional universal testing

machine without special fixtures (other than the split dees themselves). The

test has the disadvantages, however, that (1) no test section is available at

which strain gages may be mounted to measure the stress-strain properties,

and (Z) more seriously, the test introduces substantial bending moments in

the ring where the split occurs between the two dees. These bending moments

extend above and below the split, as shown in Figure 33. Because the mem-

brane stress in the ring causes it to increase in diameter as the load increases,
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the ring tends to pull away from the corners of the dee, and the maximum

bending moment is that associated with the load times the deflection to the

center of the ring cross-section near the corners of the dees. The magnitude

of the bending may be found from the following equations (developed in Appendix B).

where I

(i)

may be evaluated by the trial and error solution of the equations

and

(3)

such that
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whe r e

M

E
1

R
o

P

A

2
and @

GI2

bending moment at center line of ring, at split in dees

Young's modulus in direction of filaments

moment of inertia of ring cross-section

initial inside radius of ring

ring thickness

load acting in each half of ring (one-half of applied load)

ring cross-sectional area

unsupported semi- span between dees

slope at point of departure of ring from dee, measured

relative to direction of load application.

shear modulus along filaments

Evaluation of equation (1) for a typical E-glass reinforced epoxy ring

for R = 7.30 cm. (2.875 in.) yields the curve of maximum bending stress
o

vs. ring thickness given in Figure 34. Obviously these bending stresses are

of sufficient magnitude to raise questions about the engineering merit of the

tensile strength values measured as the P/A stress at the maximum load on the

ring.

(Curiously, the magnitude of the bending moment is relatively insensi-

rive to the composite properties. For example, the stress increment due to

bending in an hypothetical boron/epoxy ring with E 1 = 414 GN/m2

psi) is essentially the same as that in a glass-epoxy ring with E 1

(60,000,000

GN
= 51.75

2
m
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(7, 500,000 psi) at the same load. The increased bending stiffness of the boron/

epoxy is compensated for by the decreased diametral expansion of the ring

under load, so that the bending stresses remain essentially constant as E 1

varies. )

Variations of the Split-Dee Te_t

in_ _ig1_ u_ding o_so__+__ encountered ...._nthe _plit-dee test are rather

disappointing in view of the many attractive features of the test. Accordingly

the question naturally arises as to whether minor changes may be made in

specimen or fixture design which will reduce or eliminate the bending. Some

possible variations of this nature are considered below.

The "racetrack" specimen - The provision of a straightaway section adjacent

to the split in the dees is a first logical step toward the improvement of the

N. O. L. ring split-dee tensile test. Sucha specimen is shown schematically

in Figure 35.

The analysis of the bending of the critical section of the racetrack is

similar to that of the ring, and is described in the following equations:

(5)
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where now

and

is evaluated from

__ /Z-_i

eI=_,.-, .........
;%+

-,.,-,

e,': "i'-'//, -__" z'£-Ptz_,,,,

(6)

(7)

again with

e,=e,
where s = length of straightaway, and the other symbols are as before.

Results from the analysis of this racetrack specimen compared to those

from the N. O. L. ring are compared in Figure 36.

bending is not eliminated by the straightaway, it is

even by a r_lativ_ly short straight section. For exar_ple, just a 1 cm (0.4 in.)

straightaway reduces the bending moment to less than one-half that of the

Figure 36 shows that while

substantially reduced, -

circular ring.
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The mechanics of the reduction of maximum bending moment are

suggested in the (exaggerated) sketch of Figure 37. Under load the mid-point

of the straightaway deflects inward toward the center of the track, so that

even though the curved portions pull away from the dees the eccentricity of

the tensile load at mid-span is small and hence the moment associated with

it is s____a!!,- i: e. the maximum moment is still that near the corners of

the dees, not that at mid-span. The fact that the moment in the straight

portion is small, however, is advantageous for the use of strain gages in that

region.

Experimental confirmation of a qualitative nature of the foregoing

analyses of split-dee tests were obtained by photoelastic tests (Figure 33

and 38}_andby strain measurements on an enlarged, aluminum-alloy ring

(Figure 39). Even with the enlarged ring the stress gradients were so steep

around the circumference that the gages could not be located accurately enough

to make a quantitative check of the analyses. Indeed, the strain gaging

problems pointed up the merits of some such approach as the following for

further improving the split-dee test.
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Compression Tests of N.O.L. Rings

A simple compression test for an N.O.L. ring-type specimen (analogous

to the split-dee test for tension) would be useful for the evaluation of the com-

pressive properties of filament-wound composites. Efforts to develop such a

test under this contract were not successful. The specimen tried is shown

schematically in Figure 40,consisting of two short segments cut from an N. o.g.

ring and mounted back to back as shown.

Application of tangential end loads to the segments of ring in Figure 40 and

pressure-like forces from the supporting, hour-glass-like core ideally would

reproduce the compression induced in an entire ring by external pressure.

That is, moment equilibrium at any station ej along the segment is represented

by the equation

where

P

load.

= 1/2 total load

R = ring radius

_' = i/2 angle included by segment

= intensity of normal load on ring at station _I

that is W ,T _(O_

As might be expected, this equation is compatible with a simple pressure

Thus, if W ,11'
4rl
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Tests of specimens fabricated as sketched in Figure 40, however, were not

successful in maintaining the compatibility so readily expressible in equation

form. Attempts were made to replace the resin filler of Figure 40 with aluminum-

leading to a nice test of the aluminum (Fig. 41); attempts were made to test

specimens of larger radius of curvature in this fashion, and a maximum failure

stress of 59__M_'_ (86 ksi) was so achieved in a glass/epoxy compos ;_._,..D_pi_,__
m 2

the fact that failure in this case appeared to be by shearing at the quarter point

of the specimen with no evidence of overall column instability (Fig. 42), the

stress is less than can be achieved with well collimated, straight compression

specimens and is probably not representative of the material strength.

Some evidence of "brooming" of the ends of the specimens was apparent

even in this best test. A number of further tests of like specimens with ends

cast in cerrobend were made to try to avoid such end failures. Stresses in no

case were higher than the foregoing value.

Initially straight specimens appear to be required for compression testing.
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Low-Melting Alloy Casting Fixture of Compression Tests

The use of a fixture in which the specimen ends can be cast in a low-

melting point alloy has proved successful in preventing premature "brooming"

type failure in tests of straight compression bars. Such a fixture is shown in

Figure 42. The fixture incorporates end plates having holes, - of the same

shape as the specimen cross-section, - but approximately 0.6 cm. (i/4 in,)

oversize so that .3 cm. of the low-melting alloy can be cast all around between

the hole wall and the specimen.

Conventional 3 to i aspect ratio, uni-directionally reinforced compres-

sion specimens have been tested in this type of fixture with consistently high

stresses at failure. Consistency and modes of failure both suggest that these

high stresses are representative of the compressive properties of the material.
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Elastic Moduli

The desire to measure the elastic constants of a uniaxial fibrous corn-

posite by using specimens which represent the filament winding fabrication

process has led to the use of thin-walled circumferentially wound tubes

(e.g. Ref 29). Axial load and internal or external pressure tests of such tubes

can be used to measure four of the five independent effective elastic con-

stants of the composite material. (See Ref. ll for a discussion of independent

effective moduli of composites.) The use of these thin cylindrical tubes to

measure the elastic moduli of a composite laminate appears to be a most

suitable approach. However, it is not without problems; the first of which

is that of definition of the moduli. When a laminate is to be used as a plate

or shell structure, the desired elastic relations may be written with respect

to the principal geometric axes, denoted as the l and 2 directions, as:

I NI l

N22

NI2

_MII

M22

M
12

C

- (8)
¢11

11 (tt)

(131
_t12

where: are the three middle surface strain components

are the three curvature components
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N are the three stress resultants

M are the three moment resultants.

In this form, for an arbitrary laminate, the C.. matrix is a 6 x 6 array of e-
IJ

lastic constants which must be determined experimentally. Because the lami-

nate is non-homogeneous there may be coupling between extension and bend-

ing. The existance of certain non-zero terms in J'Ln_-C n-_atrix .... 1_t,_

the relationships among these elastic constants and the so called engineer-

ing constants: Young's moduli and Poisson's ratios. This is best illustrated

by considering alternate forms of Equations (8) - (13). These Equations may

be written as (e.g. Ref. 2):

N. =a _ +b _t
1 ij j ij j

M. = b.. e. _ d. _t.
1 1J J 13 J

(14)

These Equations are represented by:

(15)

Equation (15) can be manipulated to yield:

(16)

and
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Ill .... (17)

As an example we now consider the Young's modulus in the 1 direction

which can be defined as the ratio of average stress to strain a_u---= is" therefore

given by:

N
1

E 1 -

t el (18)

where t is the laminate thickness.

as

This modulus can be evaluated from Equation (17) for N 2 = N 3 = M = O,i

1
E - (19)

1 tA
11

Z

Or it can be evaluated from Equation (16) for N 2 = N 3 _ti
=0as:

E - 1 (2o)
i tell

The definition of Equation (19) is consistent with the usual practice of having

all but one of the stress components vanish. However, the restrictions assoc-

iated with the definition of Equation (20) are representative of the loading con-

ditions on the shell specimen. That is, _ = 0, because of symmetry. These
i

two definitions are not the same unless b . = 0; in which event, it follows that
iJ
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f.. = g.. : B : C = 0 andA = e
ij ij ij ij ij kj.

It is suggested that the rational approach to this problem is to de-

emphasize the calculation of Young's moduli, etc. and to utilize a six by six

matrix definition of the elastic constants of a laminate. When a particular

extensional or bending stiffness is required, the definition thereof should be

explicitly stated.

A second aspect of the modulus problem is the influence of the form of

the material anisotropy and the specimen configuration upon measured values.

The filament wound cylindrical tube under consideration is a material possess-

ing cylindrical anisotropy. In the case of a circumferential or other winding

pattern symmetric with respect to the principal geometric axes, the material

may be considered to be cylindrically orthotropic. An analysis of the stress

distribution in such a medium for various applied loads is available in Refer-

ence 30, which shows that the stress distribution even for simple applied loads

is non uniform. For example the axial stress, _ , in a cylindrical tube sub-
Z

jected to an axial load is not constant unless :2 = :2 This condition is gen-
rz @z"

eralIy not satisfied in a filament wound shell, and for a circumferentially

wound shell, the two Poisson ratios are definitely unequal. In this case, the

modulus defined by Equation 18 is an average value and can be related to the

true value by using the expression for the axial stress, _ . This result is
Z

presented on page 254 of Reference 30. However, there is evidently a typo-

graphical error in Equation (40. 4) which is not diemsnionally correct as pre-

sented. The desired result was therefore rederived for the particular type
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of material symmetry represented by the circumferentially wound tube. The

extensional stresses and strains for a cylindrically orthotropic tube are

given by:

C@l=

C z

E E 8 E °r
r z

'r_,__,zE E E
r e z

zr ze 1

E _ Er z

(Zl)

The shear strains and stresses are simply related by:

Yez : r@z/G@z

y : r /G (2z)
zr zr zr

%e : _e/Cre

These relations can be further specialized for the circumferentially

wound tube inasmuch as the material plane normal to the local fiber direction

can be assumed to be a plane of elastic isotropy. Thus

E =E
z r

Vre = Vz@ (23)

Gsz : Gr8
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Equations (ZI) and IZZ) are also applicable to filament wound tubes which

are symmetric with respect to the longitudinal and circumferential direc-

tions and which have a sufficient number of laminae such that coupling between

extension and shear is negligible. To take advantage of this wider applicabili-

ty the analysis will not utilize the simplifications offered by Equation (23).

_,.... i:^; i _ symm_+_, there w_11 he no shear stresses orSince t_l_ app_,_u ,o=_= are .............

strains and the constitutive relations for this problem are those of Equation

(21). By symmetry, all variables will be functions only of the radial coordi-

nate. Thus the equilibrium equations simplify to:

_r ar-a_
+

r
r

- 0 (24)

which can be satisfied by selecting a stress function,q), such that

I d_
(J =
r r dr

dr 2

(25)

The only compatibility equation which is not satisfied automatically

is: (r)d 2 de@ = 0 (26)
- r dr + _ dr

Substitution of Equations (21) and (25) into (26) yields a fourth order differen-

tial equation on _ given by:

4 IV 3 III 2 II _21q)r ¢p +2r ¢p - r _¢p + r = 0 (27)
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S
where _2_ r _

S@
(28)

For _/i the solution is:

B i+_£o = Aio I-B , - + crZ+ D
(29)

The stresses resulting from this are:

(_ = A(I-B)r -(_+I) + B(l+_)r B-I + ZC
r

_e = A_(8-1)r-(B+I) -I+ B_(_ +l)r B * 2C (3o)

The cylinder is considered to be subjected to an axial shortening re-

sulting in a uniform strain, ez = e, and internal and external pressures, Pi

and p , respectively. This train displacement relations simplify to
o

du
c
r dr

u
C

@ r

(31)

Substitution of ]Equation (30) into Equation (Zl) defines the strains Cr and e@.

Equation (31) offer two methods of finding u. For a unique determination:

P
z

Use of the boundary conditions:

(32)
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0 (r=r.) = - Pir 1

Or(r=ro ) = -Po

(33)

defines the remaining two constants in Equation (30).

r cJ°],_ _-(S*i) i - B - 1
rk

This yields:

_c_-i

(34)

0

r
i

where C =
r
o

z_

I ]-(_,i) *

:_ (r_ r
i L- Cz_

o

-I

+

(35)

P
z _lI,c_l]_,_i_°_ -_j

-(_ +i)

+_(_-)
i

(_ = E e + 120 o o+ 12 oz z z rz r
(36)
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Axial Compression Test

It is now possible to compare the results obtained by the tube tests with

the actual elastic moduli. First,

measured modulus is given by:

_ z
z e

consider the tube in axial compression. The

(37)

(7
z

is the average axial stress (total load divided by

tube cross-sectional area)

Thus :

1
= TIOz dA

- 1 SCl = _ rdr (38)

z _(r 2 2 z-r )
o I

-- = 0, into Equation (38)Substituting Equations (36), (34) and (35) with Pi Po

and the result into Equation (37) yields, after much manipulation:

E -E
z z

E
z

(VBz_V )2 2 2rz _ (_+1)

(1-Vrz Vzr) (_2-I)2

Z_ L(I*C '!il*C )-4c Jll+_Z _ (l_cZ_)(l_C2) ( 39)

For a thin shellwe find by taking the limit of Equation (39} as C-¢I that

E --E
z z

Thus the thin-walled circurnferentially wound tube appears to be a suitable test

technique for measuring the transverse Young's modulus. The magnitude of the
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error associated with this technique is indicated by computing the quantity _/

in the following equation as a function of _:

-- )2
E -E ' (4O)

Z Z _

E l-v v
z rz zr

where the correction factor, _/, is determined by comparison of Equations (Jj1_a_

and (40).

The factor _ was evaluated for a radius ratio of C = 0.9 which is a rela-

tively thick shell for this purpose. Correction factors, _, for smaller radius

ratios, C, will be smaller. It was found that:

< 0.01 2,< _ _ 6

_<0.1 2<9 < 10

It seems safe to conclude that the circurnferentially wound tube in axial

compression is a valid test for the Young's modulus transverse to the fibers of

a uniaxial composite.
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Internal Pressure Test

An internal pressure test has been used (e. g. Ref. Z9) to determine the

Young's modulus in the fiber direction and the Poisson's ratio. Strains are

measured on the inner and outer surface. For this loading we may examine

the equations for strain by substituting Equations (34) - (36) into Equation (21).

For zero lutlg_uuh,=_ and zero ...........•.,_-L _ i no_J. s sure

e@= Pi(-_-) 1 _ _ + _ _• 2G
1 0 rz

The measured surface strains will then be given by:

(41)

(r) - 2_ R @ +cZ r (i_c28_
-0 i 1 e J G \ _)- rz

(42)

_+i

I c
¢0(ro) = Z_ @P'I 1-c2_ (43)

As in the preceding section, we choose to examine the error associated

with the use of equations developed for isotropic materials. The alternative

is to write the simultaneous equations relating all the measured strains to all

the elastic moduli and solving for the latter. However, this alternative pro-

cedure is complex and perhaps not possible as there is no apparent direct

measurement to define the transverse shear stiffness, G . Thus, we con-
zr

sider

U

_ O (44)

0 ¢0

llZ



where E@ is the effective circumferential thickness for

zero axial strain.

o8 is average circumferential stress.

For equilibrium:

(..,Oa =PiU

The stiffness defined by Equation (44) can be evaluated by the use of e. g. (45)

--_ -- Oand either Equation (42) or (43). We denote the results E and E 8 respec-

tively° Treating the thin shell we write:

c = 1-6 (46)

where 6 is the shell thickness to --_: _ -•-_uo _atio. The results are:

O

E8 S
8

(47)

E = -_- - + S (48)
rz E)

Equation (47) shows that the use of the external surface strain measurement

yields a result for the extensional stiffness which has an error measured by

half the thickness to radius ratio, e. g. 5% error for a radius to thickness

ratio of 10. On the other hand, the inner surface measurement involves many

other material moduli and is therefore unsuitable for simple use in the circum-

ferential modulus determination.

Note also that there is a significant difference between internal and ex-
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ternal strains. Thus:

ce(ri) - _e(r8) IiCe(r o) = +
(49}

Tension Test

Reference to Section 43 of Reference 30 shows that the stress distribu-

tion in a cylindrically anisotropic hollow shell for which there exists at each

point a plane of elastic symmetry normal to the axis is obtained in the same

way as in an isotropic rod. That is, _Oz is the only non-vanishing stress

component and

M
U_ - r
Dz i

0

The circumferentiallywound circular shell satisfies these symmetry require-

ments and therefore provides an exact measure of the in-plane shear stiffness,

Ge .z
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CONCLUDING REMARKS

The application of existing analyses of strength and stiffness of fibrous

composites to the analysis and design of composite structures has been treat-

ed. It has been shown that,

mechanisms is incomplete,

although the present understanding of failure

it is possible to construct a rational set of fail-

ure criteria for _b_,us ..... "+0 I_+_ ^,_,_+_i _+.,,_= o _ +he fail-

ure mechanisms of a uniaxial composite have been performed by using limit

analysis techniques. Also the effect of stress concentrations upon tensile

strength has been explored and initial studies were made of the complex

moduli of fibrous composites having viscoelastic matrices.

The design criteria were used in the evaluation of columns, plates and

panels in which uniaxial composites for high strength were combined with

isotropic metals or composites for high stiffness• Designs offering substantial

improvement over those made of one material only were demonstrated. Im-

proved composite materials were achieved through the use of a third phase as

a local reinforcement of the matrix• Also approximately isotropic three-

dimensional materials were designed.

Test methods were analyzed leading to a verification of the suitability of

thin-walled tubes for modulus measurements and the unsuitability of the NOL

ring for tensile strength measurements. Improvements in methods for measure-

ment of tensile and compressive strength were demonstrated.

The studies emphasize the feasibility of using present methods for the
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mechanical analysis of composites in preliminary design studies. They also

indicate that our understanding of composite failure mechanisms is a continual-

ly evolving one requiring additional theoretical and experimental study.
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APPENDIX A - Limit Analysis For Composites With Elastic-Brittle Fibers

Five types of surface loadings are considered:

I. Tractions equivalent to a uniform shear stress TI2 are applied on

the entire boundary surface.

Use will be made of the theorems of limit analysis which will not be

stated here. For lower bound construction, a uniform stress field

1j

m

0 T 0
o

T 0 0
o

0 0

is chosen as a statically admissible stress field where T is such that Von
o

Mises'yield criterion of the matrix is not violated. Then it can easily be

shown that

L_ (1)12 = kb

where k b is the yield stress of the matrix in simple shear.

For upper bound construction,

is chosen as follows:

(a) In the region of the composite specimen not occupied by composite

cylinders and on the boundary of the composite cylinders.

u I = 0, u2 = Y0Xl' u3 = 0 (2)

a kinematically admissible velocity field
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where y is any real number.
0

(b) In any composite cylinder, the velocity field _ is the elastic dis-

placement solution to the displacement boundary value problem with displace-

ment boundary conditions (Eq. Z) prescribed as formulated in Appendix Z of

(Ref. ll) with the modification that the fibrous core is rigid.

L,

An application of the upper bound theorem gives an upper bound (T12 }U

as a function of _ and v I the latter being the volume fraction of all the composite

cylinders embedded in the composite specimen:

where

1 U
: I(ll-i)

(3)

1 2_ _ 4 #
III RI+ +Z= ---4-

II _(i-_2) B o R R

cos 0d0dR

In the case of "random array" (Ref. II) for which v = 0 and the fiber
1

Z

volume fraction of the composite specimen vf = _ , Equation (3) becomes

I%12

k b
- I1

(4)

2. Tractions equivalent to a uniform shear stress r23 are applied on

the ....: -_ulla_= of the specimen.

The condition of plane strain is assumed. Then, the Von Mises' yield

criterion for the matrix reduces to a simple form

iZl



'22 - 1"33)2 + 4T22 < 4k 23 b (5)

For lower bound construction, a uniform stress field

1j

O 0 0 1
0 0 r_

L J0 I" 0
o

is chosen as a statically admissible stress field where _r is such that Eq. (5)
o

is nowhere violated. Then it follows that the lower bound for the limit load

I J'-,", I = k b
\" °/L

which is independent of fiber volume fraction.

For upper bound construction, the same principle is used here. A

kinematically admissible velocity field is chosen as follows:

(a) In the region of the composite specimen not occupied by composite

cylinders and on the boundary of the composite cylinders,

YO ¥0

u I = 0, u Z Z x3' u3 Z xz (6)

(b) In any composite cylinder, the velocity field u is the elastic dis-

placement solution to the displacement boundary value problem with displace-

ment boundary conditions (Eq. (6)) prescribed as formulated in Appendixl

of Ref. ll with an additional condition that the fibrous core is rigid and the

lZZ



binder shell is incompressible.

An application of the upper bound theorem gives an upper bound

as a function of _ and v :
1

@L3)u = kb +kbVl(I2-1) (7)

where

and

12 _ 2_ R I(B,R) + _2(_, R) cos @ dedR
_(1- B2) 3 _ o

2

[÷
1 R4L .... z , R L.

7. j

t_2(_, R) = !$4+1S 2+1) _- - ?_

3. Tractions equivalent to uniform axial tension r22 on the composite

specimen under the conditions of plane strain.

Using the same principle, the lower bound for the limit load is

i) L = Zk b22

For upper bound construction, a kinematically admissible velocity field

is chosen which is obtained from the one constructed for the preceeding case

through an orthogonal transformation such that

iZ3



u = d u' with d
i ij j ij

0 0 0

1 1
0

/2 J2

1 1

o /T

where u'. are the velocity components used in the preceeding case referred to
3

an x'-system. Then, after some manipulation, it turns out that

Another kinematically admissible velocity field was constructed:

a. In the region of the composite specimen not occupied by composite

cylinders and on the boundary of the composite cylinders,

Y Y
o o

Ul = 0, u 2 -- -2- x2' u3 = ---2 x3

or in polar coordinates,

Y ¥
o o

u = O, u =-- r cos 2_, u = - -- r
I r 2 b 8 2 b

sin?.@

b. In any composite cylinder, the velocity field in polar coordinates

is assumed to have the following form:

Y
o

u - p(r) cos2@
r 2

Y
o

u = --- fl(r) sin2 8
8 2

•ul- i = r _ r
f b
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where p(r) and _(r) are arbitrary functions and

P(r b) = f_(r b) = r b

In addition, we assume that

incompressibility of velocity field,

(8)

p(rf) = _(rf) = 0. Becuase of the assumed

p(r) and f_(r) satisfy the following equation:

--4-
dr r r

-0
(9)

Furthermore, let p(r) = Al(r-rf)Z ¢ A 2

r ¢ 2r bf
A -

1 (rb _ rf}2

(r-rf) 3 where the constants

r +r
f b

A -
2 3

(rb - rf)

have been determined from (8) and (9).

Now the velocity field of the entire specimen is constructed and the

(r _ interms of fiber-upper bound theorem is applied to obtain a new 2

volume fraction for the case of "random array". Incidentally, this same vel-

ocity field,

new _" L_ .

\23/U

volume fractions between0 andl, b°th(r22_U and (r223

slightly higher than their corresponding values obtained

after an orthogonal transformation, can also be used to obtain a

Unfortunately, numerical calculations show that for all fiber-

obtained here are

previously.
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4. Tractions equivalent to biaxial uniform tension r22

(r22 ¢ I"33) on the composite specimen.

r2 >rFor definiteness assume 2

Case 3, it can be shown that

and I"33

Then following the ideas used in
33

2 - 3 = 2kb

°

ing form:

(_22 \ 33JU

The type of surface loading considered here is for 1".. in the follow-
, 1J

1J

m m

0 _- 0
12

712 _'22 O.

0 0 0
m m

(lO)

where the constant stress components Tl2 and _'22 are related in the following

way:

r12 = c_r22 (11)

with & a 0. This amounts to a proportional loading of combined uniform shear

stresses 1"12 and uniform tensile stresses I"22 on the boundary surface S of

the specimen.

Since both 1"12 and 1-22 are assumed finite, it is obvious that &= 0

corresponds to the case where only uniform tensile stresses T22 are present.

On the other hand, &4 oo corresponds to the case where the specimen is sub-
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jected to uniform shear stresses I"
12"

In lower bound construction, a uniform stress field of the form (2)

supplemented by (3) is chosen as a statically admissible stress field to obtain

L L
lower bounds for the limit loads 1"22 and I"12 , respectively. It turns out that,

and

for (_ O.

227L 1

2

_ 2kb _'I +6
3

(t2)

(i.e.

From Equation (12) it is obvious that for the special case where c_ = 0

for uniform transverse stress 1"22 acting alone),

k b

- f3 (13)

In the case where o.-*oo, corresponding to the case where the specimen

is subjected to the uniform in-plane shear stresses i"12 alone,

lim _2I_)L - 1

CC_ o_ k h
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For upper bound construction, a kinematically admissible velocity

field u is chosen to be a linear combination of the two kinematically ad-
4

missible velocity fields used to obtain(_" L) and(T?) , respectively:
12 U 2 U

(a) In the region of the composite specimen not occupied by composite

cylinders and on the boundary of the composite cylinders:

(i) (2)
U = U + U (14)

(i)
where u

and

:(o, ¥1xf o)

(2)(¥2 ¥2)
U = O, -- x 2, -- x4 2 2 3

vv l_zz

y = w y (15)
1 2

where _ is any real number.

(b) In any composite cylinder, the velocity field is the elastic displace-

ment solution to the displacement boundary conditions(14) together with (15)

prescribed with an additional condition that the fibrous core is rigid and the

binder material is incompressible. In fact, the solution to this displacement

boundary value problem can be obtained from the associated solutions to the

IrI2_ and (_'2L2_ bythe prin-
individual problems connected with obtaining i

ciple of superposition.

Then an application of the upper bound theorem gives, for the case of

constant _ throughout the specimen
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where

k
b

1
-- + (lw
2

(16)

1
3 RVC21(w, B, R) + q2 (w, [3, R) cos e + C'23(Ig, R) cos god@dR

C2 (w, t3, R)= 4 B4+[32+1) 3

g

?. Q4

R

and

P_
2

(w, _, IR)= zw z (i__z) 4 6
2

R

_3(fi,R) = 8-_--_ + _ __._(62 +i) 51 I3 13
2 2
R _ (41B4+IB 2 +1).]

z ]

In the case of "random array", (16) reduces to

3

k l
b -- +_w

3

(17)
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Since w in (151 is arbitrary, the lowest upper bound among the class

of upper bounds in (17) will be obtained by minimizing the right-hand side of

(17) with respect to w.

Thus,

k I

(L) min b3-- {w} 1
_22 U - +gw (18)

and {_.L_ min k gl

_/12u : {®} lb 3
-_ +CLW

will be chosen as the upper bounds for
L L

7 and _" , respectively.
22 12

(18)

( L)U and (r L) fromNumerical calculation is performed to obtain _'22 12 U

for different values of _] and c_. It is interesting to note that in the num-

erical calculation, for any giver _, w which minimizes the right hand side of

Equation (18) is a monotonic increasing function of g but w _ _ (except when

C_ = O, then w = c_ = 0).
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APPENDIX B-Derivation of Equations for N.O.L. Ring Split-Dee Test Analysis

The assumptions are made that the N. O. L. ring exactly fits around

the two dees at zero load and that there is no friction between dees and ring,

that the portion of the ring that remains in contact with the dees is subjected

to essentially a radial pressure which induces a hoop tensile force P in the

of the ring,ring. This hoop tension proauces a czrcun_=-=,,L_=_ expanslon A
"C

equivalent to:

(i)

sO

where

E
1

A

R
o

Young's modulus in hoop direction of ring

cross-sectional area of ring

initial inside radius of ring

ring thickness

_D

This circumferential expansion is converted to a straight-line separation

between the dees, so that

(z)

very nearly, and the problem is that of the analysis of a beam at the split in the
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dees as sketched below:

¥

That is, the beam is tangent to the dee at some point at a distance

from the center line of the split between the Dees, At the centerline the beam

is subjected to the tensile force P and a moment M_

the force P is also acting and a fictitious moment M
f'l

• At the point of tangency

is hypothesized of the

magnitude required to form the ring to its initial radius of curvature R + t
o 2 "

So

In other words the analysis considers the beam as initially straight when un-

will thus be foundstressed. The desired bending moment at the center line Mf_

by subtraction of the fictitious moment Mo from M_ .

Selecting x-y coordinates as shown, we note that the moment M at any

section of the beam is

,vi= +,,,
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or

dx _, = (4)

Let

By substitution (4) becomes

P
(_)

v,r ,Wo
(6)

The solution of (6) is

¥ = " Ellk - cos/,
(7}

Accordingly the slope _ at the point of tangency of the beam to the dees is

The deflection is similarly found as

(

(9)
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Combining {8) and {9)

! e,'Because the beam is tangent to the dee at x = , the angle subtended by

the arc of the dee between the split and the point of contact may be found by

trigonometry as

And

(to)

(ll)

(1Z)

Finally, from (3) for y = 0

Or by substitution of (9)

(13)

M.
i

(14)
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Shear deflections may be included in the analysis by re-writing equation (7) as

f
¥=

-I£

(15)

For a rectangular section n = 1.2, and (15} becomes

Analysis to include the effect of the straightaway on the racetrack specimen

follows the same form as above, leading directly to the equations given in the

text.
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I-Direction F#amenf6

r IJLT rl"_

As-:.__-:., _E

(,._)¢.,,,)L' .,d (,_

A,:A,-

Table i. - Generalized equations for compliances of composites having uni-

directional reinforcing filaments in the l-direction (from Ref. i).
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1-Direct�on f ilamentz

/nferrelationahip_ _mong _onsfont_ fbr
frensverae iaoeropy

A_= A_ = I - ,,za-z ,,/,r,,z_

A_ = A 4 -ZA e

AT " A _ " G/z

Aa-" 6z3

Table 2. Relationships among elastic constants and compliances for uni-direc-

tional reinforcement for use in evaluations of the various _'s in

Table l (from Ref. l).
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@('_)

Table 3. - Equations for the transverse effectiveness factors (_) in terms of

the elastic constants for uni-directional reinforcement (equations of

Table 2 solved in terms of Bfor B. i values equal to unity).
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Table 4.

+f.,,,,E_. A ,,+E, ]

(/+,¥,30.z%.),"',.,+

#++6_+%)_o, -

#+,,,,,_-,+..,_+.;_-,.,.f'_ )

_z'_, 7. ,

#++z,-,+,j-,

L- -_l II- " -"

Generali_.ed equations for the compliances of three-dimensionally

reinforced composites having three orthogonal planes of symmetry.
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Table 4. - (Cont.)
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Table 4. - (Cont.) J
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Figure 18. Typical Variations of Transverse Effectivenesses of Filamentary

Reinforcement with Volume Fraction, as Calculated for an E-

Gla s s /Epoxy C ompo s ite.
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Figure 22. Changes in Column-Binding Characteristics of Scalloped Thin-

Walled Tubes at Constant R/t with Angle Included by Scallop.
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Figure 27. Calculated Compliances AI, A4, and A6, Caltropic Reinforcement

in the Directions of the Orthotropic axis i-, Z-, 3- Respectively, for

Equal and Unequal Assumed Transverse Effectivenesses _. (El = I0,
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Figure 2S. Calculated Compressive Strengths for Three Indicated Failure Modes
for a Boron/Epoxy Composite of Nominal Constituent Properties with
Constant Total Reinforcement Volume Fraction of 50% but Varying
Proportions of the Reinforcement Uni-directional and Randomly Dis-
persed in the Binder.
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Figure 29. Calculated Compressive Strengths for Three Indicated Failure Modes

for Glass/Epoxy Composites of Nominal Constituent Properties with

Constant Total Reinforcement Volume Fraction of 50%, but Varying

Proportions of the Reinforcement Uni-directional and Randomly Dis-

persed in the Binder.
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Figure 30. Calculated Compressive Strengths for Glass-Boron/Epoxy Com-

posites of Nominal Constituent Properties with Constant Uni-Direc-

tional Boron Reinforcement Volume Fraction Vf = 0. 5 and Varying

Quantities of Randomly Dispersed Glass Filaments in the Binder.
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Figure 3 i. Experimental Results for Tests of Glass-Boron/Epoxy Composites

having Uni-directional Boron Filamentary Reinforcement of Nominally

50% by Volume, and Comparison with Calculations for Various

Glass-Filament and Binder Strengths.
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N 402-093

Figure 32.
Schematic of N. O. L. Ring, "Split-Dee" Tensile Test.
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Figure 34. Results of Analysis of Maximum Bending Moment in the "Split -Dee"

Test of a Glass Filament Reinforced Epoxy N.O.g. Ring.
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Figure 35. "Race-Track", Filament-Wound Tensile Specimen•
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Figure 36. Ratios of Maximum Bending Moments Induced in Race-Track

and Circular 0. 15 cm.(0.06 in.) Thick Split-Dee Specimens of

Glass/Epoxy at 0.69 ON
2 (i00 ksi) Axial Stress.
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Figure 37. Schematic Representative

Track" Specimen.
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Figure  38. Photoelastic Study of S t resses  in the Straightaway of a "Race- 
Track ' '  Specimen. 
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Figure 39. Strain Measurements Near the Split in the Dee in N. O. L.

Type Split-Dee Tension Test.
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Figure 40. Proposed Compression Specimen Made from Segments 9f NOL

Ring.
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F i g u r e  43.  Top and End Views of Compression Specimen Cast in Cerrobend 
End Fixture  s. 
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